Table 39-11. Software ouput control behavior when (COMP = 1)
CH(n)OC
CH(n+1)OC
CH(n)OCV
CH(n+1)OCV
Channel (n) Output
Channel (n+1) Output
0
0
X
X
is not modified by SWOC
is not modified by SWOC
1
1
0
0
is forced to zero
is forced to zero
1
1
0
1
is forced to zero
is forced to one
1
1
1
0
is forced to one
is forced to zero
1
1
1
1
is forced to one
is forced to zero
Note
• The CH(n)OC and CH(n+1)OC bits should be equal.
• The COMP bit must not be modified when software output
control is enabled, that is, CH(n)OC = 1 and/or CH(n
+1)OC = 1.
• Software output control has the same behavior with
disabled or enabled FTM counter (see the CLKS field
description in the Status and Control register).
39.5.15 Deadtime insertion
The deadtime insertion is enabled when DTEN is set and DTVAL[5:0] is non- zero.
DEADTIME register defines the deadtime delay that can be used for all FTM channels.
The clock for the DEADTIME delay is the FTM input clock divided by DTPS bits and
the DTVAL[5:0] bits define the deadtime modulo, that is, the number of the deadtime
prescaler clocks.
The deadtime delay insertion ensures that no two complementary signals (channels (n)
and (n+1)) drive the active state at the same time.
If POL(n) = 0, POL(n+1) = 0, and the deadtime is enabled, then when the channel (n)
match (FTM counter = C(n)V) occurs, the channel (n) output remains at the low value
until the end of the deadtime delay when the channel (n) output is set. Similarly, when the
channel (n+1) match (FTM counter = C(n+1)V) occurs, the channel (n+1) output remains
at the low value until the end of the deadtime delay when the channel (n+1) output is set.
See the following figures.
If POL(n) = 1, POL(n+1) = 1, and the deadtime is enabled, then when the channel (n)
match (FTM counter = C(n)V) occurs, the channel (n) output remains at the high value
until the end of the deadtime delay when the channel (n) output is cleared. Similarly,
Chapter 39 FlexTimer Module (FTM)
Kinetis KE1xZ256 Sub-Family Reference Manual, Rev. 3, 07/2018
NXP Semiconductors
957
Summary of Contents for Kinetis KE1xZ256
Page 2: ...Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 2 NXP Semiconductors...
Page 178: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 178 NXP Semiconductors...
Page 356: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 356 NXP Semiconductors...
Page 410: ...Interrupts Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 410 NXP Semiconductors...
Page 604: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 604 NXP Semiconductors...
Page 634: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 634 NXP Semiconductors...
Page 674: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 674 NXP Semiconductors...
Page 820: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 820 NXP Semiconductors...
Page 1030: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1030 NXP Semiconductors...
Page 1052: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1052 NXP Semiconductors...
Page 1066: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1066 NXP Semiconductors...
Page 1268: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1268 NXP Semiconductors...
Page 1314: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1314 NXP Semiconductors...
Page 1316: ...Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1316 NXP Semiconductors...