13.4.4 Performance
This section addresses the performance of the eDMA module, focusing on two separate
metrics:
• In the traditional data movement context, performance is best expressed as the peak
data transfer rates achieved using the eDMA. In most implementations, this transfer
rate is limited by the speed of the source and destination address spaces.
• In a second context where device-paced movement of single data values to/from
peripherals is dominant, a measure of the requests that can be serviced in a fixed time
is a more relevant metric. In this environment, the speed of the source and destination
address spaces remains important. However, the microarchitecture of the eDMA also
factors significantly into the resulting metric.
13.4.4.1 Peak transfer rates
The peak transfer rates for several different source and destination transfers are shown in
the following tables. These tables assume:
• Internal SRAM can be accessed with zero wait-states when viewed from the system
bus data phase
• All internal peripheral bus reads require two wait-states, and internal peripheral bus
writes three wait-states, when viewed from the system bus data phase
• All internal peripheral bus accesses are 32-bits in size
NOTE
All architectures will not meet the assumptions listed above.
See the SRAM configuration section for more information.
This table compares peak transfer rates based on different possible system speeds.
Specific chips/devices may not support all system speeds listed.
Table 13-4. eDMA peak transfer rates (Mbytes/sec)
System Speed, Width
Internal SRAM-to-
Internal SRAM
32 bit internal peripheral
bus-to-Internal SRAM
Internal SRAM-to-32 bit
internal peripheral bus
48 MHz, 32 bit
96.0
48.0
38.4
66.7 MHz, 32 bit
133.3
66.7
53.3
83.3 MHz, 32 bit
166.7
83.3
66.7
100.0 MHz, 32 bit
200.0
100.0
80.0
133.3 MHz, 32 bit
266.7
133.3
106.7
150.0 MHz, 32 bit
300.0
150.0
120.0
Chapter 13 Enhanced Direct Memory Access (eDMA)
Kinetis KE1xZ256 Sub-Family Reference Manual, Rev. 3, 07/2018
NXP Semiconductors
247
Summary of Contents for Kinetis KE1xZ256
Page 2: ...Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 2 NXP Semiconductors...
Page 178: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 178 NXP Semiconductors...
Page 356: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 356 NXP Semiconductors...
Page 410: ...Interrupts Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 410 NXP Semiconductors...
Page 604: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 604 NXP Semiconductors...
Page 634: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 634 NXP Semiconductors...
Page 674: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 674 NXP Semiconductors...
Page 820: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 820 NXP Semiconductors...
Page 1030: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1030 NXP Semiconductors...
Page 1052: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1052 NXP Semiconductors...
Page 1066: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1066 NXP Semiconductors...
Page 1268: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1268 NXP Semiconductors...
Page 1314: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1314 NXP Semiconductors...
Page 1316: ...Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1316 NXP Semiconductors...