![Infineon XDPP1100 Technical Reference Manual Download Page 100](http://html1.mh-extra.com/html/infineon/xdpp1100/xdpp1100_technical-reference-manual_2055193100.webp)
User Manual
100 of 562
V 1.0
2021-08-25
XDPP1100 technical reference manual
Digital power controller
Compensator
The filter coefficient parameters use an exponent mantissa format to provide an extended range utilizing fewer
total bits. The upper three bits of kfp1_index represent the exponent and the lower three bits represent the
mantissa. The integer and real number representations of K
FP1
are computed as shown in Equations (6.2) to
(6.5).
𝑘
𝑓𝑝1
_𝑒𝑥𝑝 = 𝑀𝐼𝑁(6, 𝑘
𝑓𝑝1
_𝑖𝑛𝑑𝑒𝑥[5: 3])
(6.2)
𝑘
𝑓𝑝1
_𝑚𝑎𝑛 = (𝑘
𝑓𝑝1
_𝑖𝑛𝑑𝑒𝑥[5: 3] > 6)? 7: 𝑘
𝑓𝑝1
_𝑖𝑛𝑑𝑒𝑥[2: 0]
(6.3)
𝐾
𝐹𝑃1
= (8 + 𝑘
𝑓𝑝1
_𝑚𝑎𝑛) ∗ 2
𝑘
𝑓𝑝1
_𝑒𝑥𝑝
(6.4)
𝐾
𝑓𝑝1
_𝑟𝑒𝑎𝑙 = 𝐾
𝐹𝑃1
∗ 2
−13
(6.5)
The location of the first high-frequency pole can be computed as provided in Equation (6.6), using the
previously computed real number representation for K
FP1
.
𝑓𝑝1 = (
1
2𝜋𝑇
𝑠
) (
𝐾
𝑓𝑝1
_𝑟𝑒𝑎𝑙
1−𝐾
𝑓𝑝1
_𝑟𝑒𝑎𝑙
) , 𝑇
𝑆𝐴𝑀𝑃𝐿𝐸
=
1
50𝑀𝐻𝑧
(6.6)
Note that
pid_kfp1_index_1ph
is clamped to 55 internally corresponding to a maximum exponent of 6.
shows the corresponding integer and real number representations of K
FP1
for each kfp1_index value.
Table 29
kfp_index to K
FP
, kfp_real
kfp_index
K
FP
kfp_real
0
8
0.0010
1
9
0.0011
2
10
0.0012
3
11
0.0013
4
12
0.0015
5
13
0.0016
6
14
0.0017
7
15
0.0018
8
16
0.0020
9
18
0.0022
10
20
0.0024
11
22
0.0027
12
24
0.0029
13
26
0.0032
14
28
0.0034
15
30
0.0037
16
32
0.0039
17
36
0.0044
18
40
0.0049
19
44
0.0054
20
48
0.0059