1 - 3
MELSEC-Q
1 PRODUCT OUTLINE
(c) Continuous positioning control using multiple positioning data can be
executed in accordance with the operation patterns the user assigned to
the positioning data. (Refer to Section 5.3 and 9.1.2)
Continuous positioning control can be executed over multiple blocks, where
each block consists of multiple positioning data. (Refer to Section 10.3.2.)
(d) OPR control is given additional features (Refer to Section 8.2.)
1) Six different machine OPR methods are provided: near point dog
method (one method), stopper methods (three methods), and count
methods (two methods).
2) OPR retry function facilitates the machine OPR control from an
arbitrary position.
(The machine OP a premier reference position for positioning control.
The machine is set to the machine OP through one of the machine
OPR methods mentioned in 1) above.)
(e) Two acceleration/deceleration control methods are provided: trapezoidal
acceleration/deceleration and S-curve acceleration/deceleration. (Refer to
Section 12.7.6.)
(The S-curve acceleration/deceleration control is disabled if stepping
motors are used. Refer to Section 1.3.)
(3) Quick startup (Refer to Section 3.1.)
The processing time to start the positioning operation is shortened.
QD75P N/QD75D N: 1.5ms (QD75P /QD75D : 6ms)
When operation using simultaneous start function or interpolation operation is
executed, the axes start without delay.
(Example)
Axis 1 and Axis 3 are started by the
simultaneous start function
: No delay in Axis 1 and
Axis 3 start
Axis 2 and Axis 4 are started by the
interpolation operation
: No delay in Axis 2 and
Axis 4 start
(4) Faster pulse output and allowance of longer distance to drive unit
(Refer to Section 3.1.)
The modules with a differential driver (QD75D N (QD75D )) incorporate the
improvements in pulse output speed and maximum distance to the drive unit.
• QD75D N: 4Mpulse/s, 10m max. (QD75D : 1Mpulse/s, 10m max.)
• QD75P N: 200kpulse/s, 2m max. (QD75P : 200kpulse/s, 2m max.)
(5) Easy maintenance
Each QD75 positioning module incorporates the following improvements in
maintainability:
(a) Data such as the positioning data and parameters can be stored on a flash
ROM inside the QD75, eliminating the need of a battery for retaining data.
(Refer to Section 7.1.1.)
(b) Error messages are classified in more detail to facilitate the initial
troubleshooting procedure. (Refer to Section 15.1.)
(c) The module retains 16 error messages and 16 warning messages recently
output, offering more complete error and warning histories.
(Refer to Section 5.6.1.)
Summary of Contents for Melsec-Q QD75D1
Page 1: ......
Page 2: ......
Page 22: ...A 20 MEMO ...
Page 24: ...MEMO ...
Page 41: ...1 17 MELSEC Q 1 PRODUCT OUTLINE MEMO ...
Page 48: ...1 24 MELSEC Q 1 PRODUCT OUTLINE MEMO ...
Page 60: ...2 12 MELSEC Q 2 SYSTEM CONFIGURATION MEMO ...
Page 137: ...5 33 MELSEC Q 5 DATA USED FOR POSITIONING CONTROL MEMO ...
Page 232: ...5 128 MELSEC Q 5 DATA USED FOR POSITIONING CONTROL MEMO ...
Page 252: ...6 20 MELSEC Q 6 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL ...
Page 253: ...6 21 MELSEC Q 6 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL ...
Page 278: ...6 46 MELSEC Q 6 SEQUENCE PROGRAM USED FOR POSITIONING CONTROL MEMO ...
Page 292: ...MEMO ...
Page 436: ...9 120 MELSEC Q 9 MAJOR POSITIONING CONTROL MEMO ...
Page 464: ...10 28 MELSEC Q 10 HIGH LEVEL POSITIONING CONTROL MEMO ...
Page 638: ...14 24 MELSEC Q 14 DEDICATED INSTRUCTIONS MEMO ...
Page 647: ...15 9 MELSEC Q 15 TROUBLESHOOTING MEMO ...
Page 686: ...15 48 MELSEC Q 15 TROUBLESHOOTING MEMO ...
Page 839: ...Appendix 153 MELSEC Q APPENDICES 6 QD75D4N 90 23 27 4 12 98 4 46 Unit mm ...
Page 840: ...Appendix 154 MELSEC Q APPENDICES 7 QD75P1 QD75P2 QD75P4 27 4 23 98 90 4 46 unit mm ...
Page 841: ...Appendix 155 MELSEC Q APPENDICES 8 QD75D1 QD75D2 QD75D4 27 4 23 90 12 98 4 46 unit mm ...
Page 842: ...Appendix 156 MELSEC Q APPENDICES MEMO ...
Page 857: ......
Page 858: ......