Section 13 Serial Communication Interface (SCI)
Rev. 1.00 Mar. 12, 2008 Page 456 of 1178
REJ09B0403-0100
13.4.6
Serial Data Reception (Asynchronous Mode)
Figure 13.8 shows an example of the operation for reception in asynchronous mode. In serial
reception, the SCI operates as described below.
1. The SCI monitors the communication line, and if a start bit is detected, performs internal
synchronization, receives receive data in RSR, and checks the parity bit and stop bit.
2. If an overrun error (when reception of the next data is completed while the RDRF flag in SSR
is still set to 1) occurs, the ORER bit in SSR is set to 1. If the RIE bit in SCR is set to 1 at this
time, an ERI interrupt request is generated. Receive data is not transferred to RDR. The RDRF
flag remains to be set to 1.
3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to
RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated.
4. If a framing error (when the stop bit is 0) is detected, the FER bit in SSR is set to 1 and receive
data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt
request is generated.
5. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data is
transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt request is
generated. Because the RXI interrupt routine reads the receive data transferred to RDR before
reception of the next receive data has finished, continuous reception can be enabled.
RDRF
FER
0
1 frame
D0
D1
D7
0/1
1
0
D0
D1
D7
0/1
0
1
1
Data
Start
bit
Parity
bit
Stop
bit
Start
bit
Data
Parity
bit
Stop
bit
ERI interrupt request
generated by framing
error
Idle state
(mark state)
RDR data read and RDRF
flag cleared to 0 in RXI
interrupt service routine
RXI interrupt
request
generated
Figure 13.8 Example of SCI Operation in Reception
(Example with 8-Bit Data, Parity, One Stop Bit)
Summary of Contents for H8S Family
Page 2: ...Rev 1 00 Mar 12 2008 Page ii of xIviii...
Page 8: ...Rev 1 00 Mar 12 2008 Page viii of xIviii...
Page 28: ...Rev 1 00 Mar 12 2008 Page xxviii of xIviii...
Page 48: ...Rev 1 00 Mar 12 2008 Page xlviii of xIviii...
Page 70: ...Section 1 Overview Rev 1 00 Mar 12 2008 Page 22 of 1178 REJ09B0403 0100...
Page 108: ...Section 2 CPU Rev 1 00 Mar 12 2008 Page 60 of 1178 REJ09B0403 0100...
Page 116: ...Section 3 MCU Operating Modes Rev 1 00 Mar 12 2008 Page 68 of 1178 REJ09B0403 0100...
Page 152: ...Section 5 Interrupt Controller Rev 1 00 Mar 12 2008 Page 104 of 1178 REJ09B0403 0100...
Page 206: ...Section 6 Bus Controller BSC Rev 1 00 Mar 12 2008 Page 158 of 1178 REJ09B0403 0100...
Page 420: ...Section 9 14 Bit PWM Timer PWMX Rev 1 00 Mar 12 2008 Page 372 of 1178 REJ09B0403 0100...
Page 476: ...Section 12 Watchdog Timer WDT Rev 1 00 Mar 12 2008 Page 428 of 1178 REJ09B0403 0100...
Page 552: ...Section 14 CRC Operation Circuit CRC Rev 1 00 Mar 12 2008 Page 504 of 1178 REJ09B0403 0100...
Page 712: ...Section 18 I2 C Bus Interface IIC Rev 1 00 Mar 12 2008 Page 664 of 1178 REJ09B0403 0100...
Page 804: ...Section 19 LPC Interface LPC Rev 1 00 Mar 12 2008 Page 756 of 1178 REJ09B0403 0100...
Page 838: ...Section 20 Ethernet Controller EtherC Rev 1 00 Mar 12 2008 Page 790 of 1178 REJ09B0403 0100...
Page 964: ...Section 24 RAM Rev 1 00 Mar 12 2008 Page 916 of 1178 REJ09B0403 0100...
Page 1066: ...Section 25 Flash Memory Rev 1 00 Mar 12 2008 Page 1018 of 1178 REJ09B0403 0100...
Page 1098: ...Section 26 Boundary Scan JTAG Rev 1 00 Mar 12 2008 Page 1050 of 1178 REJ09B0403 0100...
Page 1226: ...Rev 1 00 Mar 12 2008 Page 1178 of 1178 REJ09B0403 0100...
Page 1229: ......
Page 1230: ...H8S 2472 Group H8S 2462 Group Hardware Manual...