manualshive.com logo in svg
background image

36-Mbit QDR™-II SRAM 2-Word

Burst Architecture

CY7C1410JV18, CY7C1425JV18
CY7C1412JV18, CY7C1414JV18

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document #: 001-12561 Rev. *D

 Revised March 10, 2007

Features

Separate independent read and write data ports

Supports concurrent transactions

267 MHz clock for high bandwidth

2-word burst on all accesses

Double Data Rate (DDR) interfaces on both read and write ports 
(data transferred at 534 MHz) at 267 MHz 

Two input clocks (K and K) for precise DDR timing

SRAM uses rising edges only

Two input clocks for output data (C and C) to minimize clock 
skew and flight time mismatches

Echo clocks (CQ and CQ) simplify data capture in high-speed 
systems

Single multiplexed address input bus latches address inputs 
for both read and write ports

Separate port selects for depth expansion

Synchronous internally self-timed writes

QDR™-II operates with 1.5 cycle read latency when Delay Lock 
Loop (DLL) is enabled 

Operates like a QDR-I device with 1 cycle read latency in DLL 
off mode

Available in x8, x9, x18, and x36 configurations 

Full data coherency, providing most current data

Core V

DD

 = 1.8V (±0.1V); IO V

DDQ

 = 1.4V to V

DD

Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)

Offered in both Pb-free and non Pb-free packages

Variable drive HSTL output buffers

JTAG 1149.1 compatible test access port

Delay Lock Loop (DLL) for accurate data placement

Configurations

CY7C1410JV18 – 4M x 8
CY7C1425JV18 – 4M x 9
CY7C1412JV18 – 2M x 18
CY7C1414JV18 – 1M x 36

Functional Description

The CY7C1410JV18, CY7C1425JV18, CY7C1412JV18, and
CY7C1414JV18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR-II architecture. QDR-II architecture consists
of two separate ports: the read port and the write port to access
the memory array. The read port has data outputs to support read
operations and the write port has data inputs to support write
operations. QDR-II architecture has separate data inputs and
data outputs to completely eliminate the need to “turn-around”
the data bus required with common IO devices. Access to each
port is accomplished through a common address bus. The read
address is latched on the rising edge of the K clock and the write
address is latched on the rising edge of the K clock. Accesses to
the QDR-II read and write ports are completely independent of
one another. To maximize data throughput, both read and write
ports are provided with DDR interfaces. Each address location
is associated with two 8-bit words (CY7C1410JV18), 9-bit words
(CY7C1425JV18), 18-bit words (CY7C1412JV18), or 36-bit
words (CY7C1414JV18) that burst sequentially into or out of the
device. Because data can be transferred into and out of the
device on every rising edge of both input clocks (K and K and C
and C), memory bandwidth is maximized while simplifying
system design by eliminating bus “turn-arounds”.

Depth expansion is accomplished with port selects, which
enables each port to operate independently.

All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.

Selection Guide

Description

267 MHz

250 MHz

Unit

Maximum Operating Frequency 

267

250

MHz

Maximum Operating Current 

x8

1330

1200

mA

x9

1330

1200

x18

1370

1230

x36

1460

1290

[+] Feedback 

Содержание CY7C1410JV18

Страница 1: ...us Pipelined SRAMs equipped with QDR II architecture QDR II architecture consists of two separate ports the read port and the write port to access the memory array The read port has data outputs to support read operations and the write port has data inputs to support write operations QDR II architecture has separate data inputs and data outputs to completely eliminate the need to turn around the d...

Страница 2: ...ead Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 8 21 16 8 NWS 1 0 VREF Write Add Decode Write Reg 8 A 20 0 21 CQ CQ DOFF Q 7 0 8 8 8 Write Reg C C 2M x 8 Array 2M x 9 Array CLK A 20 0 Gen K K Control Logic Address Register D 8 0 Read Add Decode Read Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 9 21 18 9 BWS 0 VREF Write Add Decode Write Reg 9 A 20 0 21 CQ CQ DOFF Q 8...

Страница 3: ...g RPS WPS Control Logic Address Register Reg Reg Reg 18 20 36 18 BWS 1 0 VREF Write Add Decode Write Reg 18 A 19 0 20 CQ CQ DOFF Q 17 0 18 18 18 Write Reg C C 1M x 18 Array 512K x 36 Array CLK A 18 0 Gen K K Control Logic Address Register D 35 0 Read Add Decode Read Data Reg RPS WPS Control Logic Address Register Reg Reg Reg 36 19 72 36 BWS 3 0 VREF Write Add Decode Write Reg 36 A 18 0 19 CQ CQ DO...

Страница 4: ...S VSS VSS VDDQ NC NC Q0 M NC NC NC VSS VSS VSS VSS VSS NC NC D0 N NC D7 NC VSS A A A VSS NC NC NC P NC NC Q7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1425JV18 4M x 9 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 72M A WPS NC K NC 144M RPS A A CQ B NC NC NC A NC 288M K BWS0 A NC NC Q4 C NC NC NC VSS A A A VSS NC NC D4 D NC D5 NC VSS VSS VSS VSS VSS NC NC NC E NC NC Q5 VDDQ VSS VSS VSS VDDQ NC D3 Q3...

Страница 5: ...A C A A NC D0 Q0 R TDO TCK A A A C A A A TMS TDI CY7C1414JV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 288M NC 72M WPS BWS2 K BWS1 RPS A NC 144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A A VSS D16 Q7 D8 D D28 D20 Q19 VSS VSS VSS VSS VSS Q16 D15 D7 E Q29 D29 Q20 VDDQ VSS VSS VSS VDDQ Q15 D6 Q6 F Q30 Q21 D21 VDDQ VDD VSS VDD VDDQ D14 Q14 Q5 G D30 D22 Q22 VDDQ VDD VSS VDD VDDQ ...

Страница 6: ...8 for CY7C1410JV18 4M x 9 2 arrays each of 2M x 9 for CY7C1425JV18 2M x 18 2 arrays each of 1M x 18 for CY7C1412JV18 and 1M x 36 2 arrays each of 512K x 36 for CY7C1414JV18 Therefore only 21 address inputs are needed to access the entire memory array of CY7C1410JV18 and CY7C1425JV18 20 address inputs for CY7C1412JV18 and 19 address inputs for CY7C1414JV18 These inputs are ignored when the appro pr...

Страница 7: ...cted directly to GND or left unconnected DOFF Input DLL Turn Off Active LOW Connecting this pin to ground turns off the DLL inside the device The timing in the DLL turned off operation differs from those listed in this data sheet For normal operation this pin can be connected to a pull up through a 10 Kohm or less pull up resistor The device behaves in DDR I mode when the DLL is turned off In this...

Страница 8: ... states the outputs following the next rising edge of the output clocks C C This allows for a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock K On the same K clock rise the data presented to D 17 0 is latched and stored into the ...

Страница 9: ...The timing for the echo clocks is shown in the Switching Characteristics on page 22 DLL These chips utilize a Delay Lock Loop DLL that is designed to function between 120 MHz and the specified maximum clock frequency During power up when the DOFF is tied HIGH the DLL is locked after 1024 cycles of stable clock The DLL can also be reset by slowing or stopping the input clock K and K for a minimum o...

Страница 10: ... 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1410JV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1412JV18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the data portion of a write sequence CY7C1410JV18 only the upper nibble D 7 4 is written into t...

Страница 11: ...n into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the Data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 18 remains unaltered H L H H L H During the Data portion of a write sequence only the byte D 17 9 is wri...

Страница 12: ...g edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Controller Block Diagram on page 15 Upon power up the instruction register is loaded with the IDCODE instruction It is also loaded with the IDCODE instruction if the controller is placed in a reset stat...

Страница 13: ...can register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an initial data pattern at the latched parallel outputs of the boundary scan register cells before the selection of another boundary scan test operation The shifting of data for the SAMPLE and PREL...

Страница 14: ...troller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR Note 9 The 0 1 next to each state represents the value at TMS at the rising edge of TCK Feedback ...

Страница 15: ...HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 μA 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instruction Register Bypass Register Selection Circuitry Selection Circuitry TAP Controller TDI TDO TCK TMS Notes 10 These characteristics pertain to the TAP inputs TMS TCK TDI and TDO Parallel load lev...

Страница 16: ...IH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure 2 shows the TAP timing and test conditions 14 Figure 2 TAP Timing and Test Conditions tTL tTH a TDO CL 20 pF Z0 50Ω GND 0 9V 50Ω 1 8V 0V ALL INPUT PULSES 0 9V Test Clock Test Mode Select TCK TMS Te...

Страница 17: ...truction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO This operation does not affect SRAM operation SAMPLE Z 010 Captures the input and output contents Places the boundary scan register between TDI and TDO Forces all SRAM output drivers to a High Z state...

Страница 18: ... 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M 43 11C 71 1D 99 2N 16 9N 44 9B 72 2C 100 2P 17 11L 45 10B 73 3E 101 1P 18 11M 46 11A 74 2D 102 3R 19 9L 47 10A 75 2E 103 4R 20 10L 48 9A 76 1E 104 4P 21 11K 49 8B 77 2F 105 5P 22 10K 50 7C 78 3F 1...

Страница 19: ...Provide stable power and clock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies down to 120 MHz If the input clock is unstable and the DLL is enabled then the DLL may lock onto an incorrect frequency causing unstable SRAM behavior To avoid DLL locking p...

Страница 20: ...2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 3 V VIL Input LOW Voltage 0 3 VREF 0 1 V IX Input Leakage Current GND VI VDDQ 5 5 μA IOZ Output Leakage Current GND VI VDDQ Output Disabled 5 5 μA VREF Inpu...

Страница 21: ...eters Parameter Description Test Conditions 165 FBGA Package Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W ΘJC Thermal Resistance Junction to Case 3 2 C W AC Test Loads and Waveforms 1 25V 0 25V R 50Ω 5 pF INCLUDING JIG AND SCOPE ALL INPUT PULSES Device RL 50Ω Z0 50Ω...

Страница 22: ... Valid 0 45 0 45 ns tCQOH tCHCQX Echo Clock Hold after C C Clock Rise 0 45 0 45 ns tCQD tCQHQV Echo Clock High to Data Valid 0 27 0 30 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 27 0 30 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 22 1 43 1 55 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise rising edge to rising edge 22 1 43 1 55 ns tCHZ tCHQZ Clock C C Rise to High Z Active to High Z 23 24 0...

Страница 23: ...D51 D61 D31 D11 D10 D60 Q C C DON T CARE UNDEFINED t CQ CQ tKHCH tCO tKHCH tCLZ CHZ tKH tKL Q00 Q01 Q20 tKHKH tCYC Q21 Q40 Q41 tCQD tDOH tCCQO tCQOH tCCQO tCQOH tCQDOH tCQH tCQHCQH Notes 25 Q00 refers to output from address A0 Q01 refers to output from the next internal burst address following A0 that is A0 1 26 Outputs are disabled High Z one clock cycle after a NOP 27 In this example if address ...

Страница 24: ... Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1425JV18 267BZI CY7C1412JV18 267BZI CY7C1414JV18 267BZI CY7C1410JV18 267BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb Free CY7C1425JV18 267BZXI CY7C1412JV18 267BZXI CY7C1414JV18 267BZXI 250 CY7C1410JV18 250BZC 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Commercial CY7C1425JV18 250BZC CY7C1412JV18 ...

Страница 25: ...X Ø0 25 M C A B Ø0 05 M C B A 0 15 4X 0 35 0 06 1 40 MAX SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M N L J H G F E D C B A C 1 00 5 00 0 36 0 14 0 06 SOLDER PAD TYPE NON SOLDER MASK DEFINED NSMD NOTES PACKAGE WEIGHT 0 65g JEDEC REFERENCE MO 216 DESIGN 4 6C PACKAGE CODE BB0AD 51...

Страница 26: ...se of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRAN...

Отзывы: