![Intel 8XC196NT User Manual Download Page 106](http://html1.mh-extra.com/html/intel/8xc196nt/8xc196nt_user-manual_2072210106.webp)
5-1
CHAPTER 5
STANDARD AND PTS INTERRUPTS
This chapter describes the interrupt control circuitry, priority scheme, and timing for standard and
peripheral transaction server (PTS) interrupts. It discusses the three special interrupts and the five
PTS modes, two of which are used with the EPA to produce pulse-width modulated (PWM) out-
puts. It also explains interrupt programming and control.
5.1
OVERVIEW OF INTERRUPTS
The interrupt control circuitry within a microcontroller permits real-time events to control pro-
gram flow. When an event generates an interrupt, the device suspends the execution of current
instructions while it performs some service in response to the interrupt. When the interrupt is ser-
viced, program execution resumes at the point where the interrupt occurred. An internal periph-
eral, an external signal, or an instruction can generate an interrupt request. In the simplest case,
the device receives the request, performs the service, and returns to the task that was interrupted.
This microcontroller’s flexible interrupt-handling system has two main components: the pro-
grammable interrupt controller and the peripheral transaction server (PTS). The programmable
interrupt controller has a hardware priority scheme that can be modified by your software. Inter-
rupts that go through the interrupt controller are serviced by interrupt service routines that you
provide. The upper and lower interrupt vectors in special-purpose memory (see Chapter 4,
“Memory Partitions”) contain the lower 16 bits of the interrupt service routines’ addresses. The
CPU automatically adds FF0000H to the 16-bit vector in special-purpose memory to calculate the
address of the interrupt service routine, and then executes the routine. The peripheral transaction
server (PTS), a microcoded hardware interrupt processor, provides high-speed, low-overhead in-
terrupt handling; it does not modify the stack or the PSW. You can configure most interrupts (ex-
cept NMI, trap, and unimplemented opcode) to be serviced by the PTS instead of the interrupt
controller.
The PTS supports five special microcoded routines that enable it to complete specific tasks in
much less time than an equivalent interrupt service routine can. It can transfer bytes or words,
either individually or in blocks, between any memory locations in page 00H; manage multiple
analog-to-digital (A/D) conversions; and generate pulse-width modulated (PWM) signals. PTS
interrupts have a higher priority than standard interrupts and may temporarily suspend interrupt
service routines.
A block of data called the PTS control block (PTSCB) contains the specific details for each PTS
routine (see “Initializing the PTS Control Blocks” on page 5-18). When a PTS interrupt occurs,
the priority encoder selects the appropriate vector and fetches the PTS control block (PTSCB).
Summary of Contents for 8XC196NT
Page 1: ...8XC196NT Microcontroller User s Manual...
Page 2: ...8XC196NT Microcontroller User s Manual June 1995 Order Number 272317 003...
Page 22: ...1 Guide to This Manual...
Page 23: ......
Page 35: ......
Page 36: ...2 Architectural Overview...
Page 37: ......
Page 49: ......
Page 50: ...3 Programming Considerations...
Page 51: ......
Page 66: ...4 Memory Partitions...
Page 67: ......
Page 104: ...5 Standard and PTS Interrupts...
Page 105: ......
Page 147: ......
Page 148: ...6 I O Ports...
Page 149: ......
Page 176: ...7 Serial I O SIO Port...
Page 177: ......
Page 194: ...8 Synchronous Serial I O SSIO Port...
Page 195: ......
Page 211: ......
Page 212: ...9 Slave Port...
Page 213: ......
Page 231: ......
Page 232: ...10 Event Processor Array EPA...
Page 233: ......
Page 270: ...11 Analog to digital Converter...
Page 271: ......
Page 291: ......
Page 292: ...12 Minimum Hardware Considerations...
Page 293: ......
Page 306: ...13 Special Operating Modes...
Page 307: ......
Page 317: ......
Page 318: ...14 Interfacing with External Memory...
Page 319: ......
Page 362: ...15 Programming the Nonvolatile Memory...
Page 363: ......
Page 408: ...A Instruction Set Reference...
Page 409: ......
Page 476: ...B Signal Descriptions...
Page 477: ......
Page 493: ......
Page 494: ...C Registers...
Page 495: ......
Page 565: ......
Page 566: ...Glossary...
Page 567: ......
Page 580: ...Index...
Page 581: ......
Page 597: ......