Introduction
190
SPRUH82C – April 2013 – Revised September 2016
Copyright © 2013–2016, Texas Instruments Incorporated
Power Management
9.1
Introduction
Power management is an important aspect for most embedded applications. For several applications and
target markets, there may be a specific power budget and requirements to minimize power consumption
for both power supply sizing and battery life considerations. Additionally, lower power consumption results
in more optimal and efficient designs from cost, design, and energy perspectives. This device has several
means of managing the power consumption. This chapter discusses the various power management
features.
9.2
Power Consumption Overview
Power consumed by semiconductor devices has two components: dynamic and static. This can be shown
as:
Ptotal = P
dynamic
+ P
static
The dynamic power is the power consumed to perform work when the device is in active modes (clocks
applied, busses, and I/O switching), that is, analog circuits changing states. The dynamic power is defined
by:
P
dynamic
= Capacitance × Voltage
2
× Frequency
From the above formula, the dynamic power scales with the clock frequency (device/module frequency for
core operations and switching frequency for I/O). Dynamic power can be reduced by controlling the clocks
in such a way as to either operate at a clock setting just high enough to complete the required operation in
the required timeline or to run at a clock setting until the work is complete and then drastically reduce the
clock frequency or cut off the clocks until additional work must be performed.
In the formula, the dynamic power varies with the voltage squared, so the voltage of operations has
significant impact on overall power consumption and, thus, on the battery life. Dynamic power can be
reduced by scaling the operating voltage, when the performance requirements are not that high and the
device can be operated at a corresponding lower frequency.
The capacitance is the capacitance of the switching nodes, or the load capacitances on the switching I/O
pins.
The static power, as the name suggests, is independent of the switching frequency of the logic. It can be
shown as:
P
static
= f
(leakage current)
It is essentially a function of the “leakage”, or the power consumed by the logic when it is not switching or
is not performing any work. Leakage current is dependent mostly on the manufacturing process used, the
size of the die, etc. Leakage current is unavoidable while power is applied and scales roughly with the
operating junction temperatures. Leakage power can only be avoided by removing power completely from
a device or subsystem. The static power consumption plays a significant role in the Standby Modes (when
the application is not running and in a dormant state) and plays an important role in the battery life for
portable applications, etc.
9.3
PSC and PLLC Overview
The power and sleep controller (PSC) module plays an important role in managing the enabling/disabling
of the clocks to the core and various peripheral modules. The PSC provides a granular support to turn
on/off clocks on a module by module basis. Similarly, the two PLL controllers (PLLC0 and PLLC1) play an
important role in device and module clock generation, and manage the frequency scaling operations for
the device. Together these modules play a significant role in managing the clocks from a power
management feature standpoint. For detailed information on the PSC, see the
Power and Sleep Controller
(PSC)
chapter. For detailed information on the PLLC0 and PLLC1, see the
Device Clocking
chapter and
the
Phase-Locked Loop Controller (PLLC)
chapter.