13-46
Testing And Maintenance
BE1-CDS220
Step 1.
Connect one current source to terminals B1, B2 (A-phase, input 1) and a second current
source to terminals B9, B10 (A-phase, input 2).
Step 2.
Send the commands listed in Table 13-33 to the relay to setup a test of the response time of
the 87 unrestrained elements.
Table 13-33. Unrestrained Element Response Time Setup Commands
Command Purpose
A= Gain
access
SL-N=NONE
Zero out custom logic settings/overwrite with logic =
none settings
Y Confirm
overwrite
SL-N=DIFF
Sets DIFF as custom logic name
SL-87=1,0 Enables
87
SL-VO1=87UT
Enables OUT1 to close with 87 unrestrained trip
SG-CT1=1,WYE,NA,0
ctr=1, ct=wye, xfmr=na, no grd source
SG-CT2=1,WYE,NA,0
ctr=1, ct=wye, xfmr=na, no grd source
SG-TRIGGER=87UT,87UT,0
Enable 87UT to log and trigger fault recording
S#-TAP87=MANUAL,2.00,2.00 set tap 1=2.00 and tap 2=2.00
S#-87=0,15,0,0,2,1
Minpu = 0, slope = 15%, 2
nd
= disabled, 5
th
= disabled,
URO = 2 times TAP unrestrained pickup, 2
nd
harm
sharing = shared
E Exit
Y Save
settings
Step 3.
Apply 1 multiple of tap current (2 amperes) to both A-phase input 1 and A-phase input 2 (at
180
o
phase relation to input 1).
Step 4.
To force an unrestrained trip at 1.5 times pickup, you must apply a step change in the current
on input 2 to 8.0 amps. Apply step change in current to input 2 and record the time interval
between the time the step change was initiated to the time OUT1 output contact closes (the
unrestrained trip (87UT)).
Step 5.
Reduce the current to input 2 until OUT1 contact opens.
Step 6.
Apply 1 multiple of tap current (2 amperes) to both A-phase input 1 and A-phase input 2 (at
180
o
phase relation to input 1).
Step 7.
To force an unrestrained trip at 5 times pickup, you must apply a step change in the current on
input 2 to 22 amperes.
Step 8.
Apply step change in current to input 2 and record the time interval between the time the step
change was initiated to the time OUT1 output contact closes (the unrestrained trip (87UT)).
Step 9.
Reduce the current to input 2 until OUT1 contact opens.
Step 10. The time measured in Steps 4 and 8 should be less than those shown in Table 13-34.
Table 13-34. Restrained Trip Operate Times
Function Differential
current
Time
Unrestrained trip
1.5 times pu
Less than 2 cycles
Unrestrained trip
5 times pu
Less than 1 cycle
Step 11.
(Optional) Repeat steps 1 through 10 for phases B and C.
Содержание BE1-CDS220
Страница 2: ......
Страница 10: ...viii Introduction BE1 CDS220 This page intentionally left blank...
Страница 36: ...ii Quick Start BE1 CDS220 This page intentionally left blank...
Страница 48: ...ii Input And Output Functions BE1 CDS220 This page intentionally left blank...
Страница 66: ...iv Protection and Control BE1 CDS220 This page intentionally left blank...
Страница 112: ...ii Metering BE1 CDS220 This page intentionally left blank...
Страница 116: ...5 4 Metering BE1 CDS220 This page intentionally left blank...
Страница 166: ...ii BESTlogic Programmable Logic BE1 CDS220 This page intentionally left blank...
Страница 176: ...7 10 BESTlogic Programmable Logic BE1 CDS220 This page intentionally left blank...
Страница 234: ...8 56 Application BE1 CDS220 This page intentionally left blank...
Страница 236: ...ii Security BE1 CDS220 This page intentionally left blank...
Страница 240: ...9 4 Security BE1 CDS220 This page intentionally left blank...
Страница 242: ...ii Human Machine Interface BE1 CDS220 This page intentionally left blank...
Страница 256: ...10 14 Human Machine Interface BE1 CDS220 This page intentionally left blank...
Страница 258: ...ii ASCII Command Interface BE1 CDS220 This page intentionally left blank...
Страница 289: ...BE1 CDS220 Installation 12 7 Figure 12 8 MX Case Horizontal Panel Mount Front View Overall Dimensions...
Страница 422: ...14 32 BESTCOMS Software BE1 CDS220 This page intentionally left blank...
Страница 424: ...ii Time Current Characteristics BE1 CDS220 This page intentionally left blank...
Страница 441: ...BE1 CDS220 Time Overcurrent Characteristic Curves A 17 Figure A 13 Time Characteristic Curve A Standard Inverse 99 1621...
Страница 442: ...A 18 Time Overcurrent Characteristic Curves BE1 CDS220 Figure A 14 Time Characteristic Curve B Very Inverse 99 1376...
Страница 443: ...BE1 CDS220 Time Overcurrent Characteristic Curves A 19 Figure A 15 Time Characteristic Curve C Extremely Inverse 99 1377...
Страница 444: ...A 20 Time Overcurrent Characteristic Curves BE1 CDS220 Figure A 16 Time Characteristic Curve G Long Time Inverse 99 1622...
Страница 452: ...ii Terminal Communication BE1 CDS220 This page intentionally left blank...
Страница 456: ...C 4 Terminal Communication BE1 CDS220 This page intentionally left blank...
Страница 458: ...ii Settings Calculations BE1 CDS220 This page intentionally left blank...
Страница 475: ......