OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
2-28
Immediate operands are constant data contained in an instruction. Immediate data can be either
8 or 16 bits in length. Immediate operands are available directly from the instruction queue and
can be accessed quickly. As with a register operand, no bus cycles need to be run to get an imme-
diate operand. Immediate operands can be only source operands and must have a constant value.
2.2.2.2
Memory Addressing Modes
Although the Execution Unit has direct access to register and immediate operands, memory op-
erands must be transferred to and from the CPU over the bus. When the Execution Unit needs to
read or write a memory operand, it must pass an offset value to the Bus Interface Unit. The Bus
Interface Unit adds the offset to the shifted contents of a segment register, producing a 20-bit
physical address. One or more bus cycles are then run to access the operand.
The offset that the Execution Unit calculates for memory operand is called the operand’s Effec-
tive Address (EA). This address is an unsigned 16-bit number that expresses the operand’s dis-
tance, in bytes, from the beginning of the segment in which it resides. The Execution Unit can
calculate the effective address in several ways. Information encoded in the second byte of the in-
struction tells the Execution Unit how to calculate the effective address of each memory operand.
A compiler or assembler derives this information from the instruction written by the programmer.
Assembly language programmers have access to all addressing modes.
The Execution Unit calculates the Effective Address by summing a displacement, the contents of
a base register and the contents of an index register (see Figure 2-12). Any combination of these
can be present in a given instruction. This allows a variety of memory addressing modes.
Summary of Contents for 80C186XL
Page 1: ...80C186XL 80C188XL Microprocessor User s Manual...
Page 2: ...80C186XL 80C188XL Microprocessor User s Manual 1995...
Page 18: ...1 Introduction...
Page 19: ......
Page 27: ......
Page 28: ...2 Overview of the 80C186 Family Architecture...
Page 29: ......
Page 79: ......
Page 80: ...3 Bus Interface Unit...
Page 81: ......
Page 127: ......
Page 128: ...4 Peripheral Control Block...
Page 129: ......
Page 137: ......
Page 138: ...5 ClockGenerationand Power Management...
Page 139: ......
Page 154: ...6 Chip Select Unit...
Page 155: ......
Page 178: ...7 Refresh Control Unit...
Page 179: ......
Page 193: ......
Page 194: ...8 Interrupt Control Unit...
Page 195: ......
Page 227: ......
Page 228: ...9 Timer Counter Unit...
Page 229: ......
Page 253: ......
Page 254: ...10 Direct Memory Access Unit...
Page 255: ......
Page 283: ......
Page 284: ...11 Math Coprocessing...
Page 285: ......
Page 302: ...12 ONCE Mode...
Page 303: ......
Page 306: ...A 80C186 Instruction Set Additions and Extensions...
Page 307: ......
Page 318: ...B Input Synchronization...
Page 319: ......
Page 322: ...C Instruction Set Descriptions...
Page 323: ......
Page 371: ......
Page 372: ...D Instruction Set Opcodes and Clock Cycles...
Page 373: ......
Page 396: ...Index...
Page 397: ......