BUS INTERFACE UNIT
3-20
An idle bus state may or may not drive the bus. An idle bus state following a bus read cycle con-
tinues to float the bus. An idle bus state following a bus write cycle continues to drive the bus.
The BIU drives no control strobes active in an idle state except to indicate the start of another bus
cycle.
3.5
BUS CYCLES
There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt
acknowledge and halt bus cycles define special bus operations and require separate discussions.
Read bus cycles include memory, I/O and instruction prefetch bus operations. Write bus cycles
include memory and I/O bus operations. All read and write bus cycles have the same basic format.
The following sections present timing equations containing symbols found in the data sheet. The
timing equations provide information necessary to start a worst-case design analysis.
3.5.1
Read Bus Cycles
Figure 3-19 illustrates a typical read cycle. Table 3-2 lists the three types of read bus cycles.
Figure 3-20 illustrates a typical 16-bit interface connection to a read-only device interface. The
same example applies to an 8-bit bus system, except that no devices connect to an upper bus. Four
parameters (Table 3-3) must be evaluated when determining the compatibility of a memory (or
I/O) device. T
ADLTCH
defines the delay through the address latch.
Table 3-2. Read Bus Cycle Types
Status Bit
Bus Cycle Type
S2
S1
S0
0
0
1
Read I/O — Initiated by the Execution Unit for IN, OUT, INS, OUTS instructions
or by the DMA Unit. A19:16 are driven to zero (see Chapter 10, “Direct Memory
Access Unit”).
1
0
0
Instruction Prefetch — Initiated by the BIU. Data read from the bus fills the
prefetch queue.
1
0
1
Read Memory — A19:0 select the desired byte or word memory location.
Table 3-3. Read Cycle Critical Timing Parameters
Memory Device
Parameter
Description
Equation
T
OE
Output enable (RD low) to data valid
2T
CLCL
– T
CLRL
– T
DVCL
T
ACC
Address valid to data valid
3T
CLCL
– T
CLAV
–T
ADLTCH –
T
DVCL
T
CE
Chip enable (UCS) to data valid
3T
CLCL
– T
CLOV2
– T
CLIS
T
DF
Output disable (RD high) to output float
T
RHAV
Summary of Contents for 80C186XL
Page 1: ...80C186XL 80C188XL Microprocessor User s Manual...
Page 2: ...80C186XL 80C188XL Microprocessor User s Manual 1995...
Page 18: ...1 Introduction...
Page 19: ......
Page 27: ......
Page 28: ...2 Overview of the 80C186 Family Architecture...
Page 29: ......
Page 79: ......
Page 80: ...3 Bus Interface Unit...
Page 81: ......
Page 127: ......
Page 128: ...4 Peripheral Control Block...
Page 129: ......
Page 137: ......
Page 138: ...5 ClockGenerationand Power Management...
Page 139: ......
Page 154: ...6 Chip Select Unit...
Page 155: ......
Page 178: ...7 Refresh Control Unit...
Page 179: ......
Page 193: ......
Page 194: ...8 Interrupt Control Unit...
Page 195: ......
Page 227: ......
Page 228: ...9 Timer Counter Unit...
Page 229: ......
Page 253: ......
Page 254: ...10 Direct Memory Access Unit...
Page 255: ......
Page 283: ......
Page 284: ...11 Math Coprocessing...
Page 285: ......
Page 302: ...12 ONCE Mode...
Page 303: ......
Page 306: ...A 80C186 Instruction Set Additions and Extensions...
Page 307: ......
Page 318: ...B Input Synchronization...
Page 319: ......
Page 322: ...C Instruction Set Descriptions...
Page 323: ......
Page 371: ......
Page 372: ...D Instruction Set Opcodes and Clock Cycles...
Page 373: ......
Page 396: ...Index...
Page 397: ......