2-1
CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY
ARCHITECTURE
The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086,
8088, 80186, 80188, 80286, Intel386™ and Intel486™ processors. The 80C186 Modular Core
maintains full object-code compatibility with the 8086/8088 family of 16-bit microprocessors,
while adding hardware and software performance enhancements. Most instructions require fewer
clocks to execute on the 80C186 Modular Core because of hardware enhancements in the Bus
Interface Unit and the Execution Unit. Several additional instructions simplify programming and
reduce code size (see Appendix A, “80C186 Instruction Set Additions and Extensions”).
2.1
ARCHITECTURAL OVERVIEW
The 80C186 Modular Microprocessor Core incorporates two separate processing units: an Exe-
cution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally identical
among all family members. The Bus Interface Unit is configured for a 16-bit external data bus
for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units interface
via an instruction prefetch queue.
The Execution Unit executes instructions; the Bus Interface Unit fetches instructions, reads op-
erands and writes results. Whenever the Execution Unit requires another opcode byte, it takes the
byte out of the prefetch queue. The two units can operate independently of one another and are
able, under most circumstances, to overlap instruction fetches and execution.
The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data move-
ment between registers, memory and I/O space.
The 80C186 Modular Core family CPU allows for high-speed data transfer from one area of
memory to another using string move instructions and between an I/O port and memory using
block I/O instructions. The CPU also provides many conditional branch and control instructions.
The 80C186 Modular Core architecture features 14 basic registers grouped as general registers,
segment registers, pointer registers and status and control registers. The four 16-bit general-pur-
pose registers (AX, BX, CX and DX) can be used as operands for most arithmetic operations as
either 8- or 16-bit units. The four 16-bit pointer registers (SI, DI, BP and SP) can be used in arith-
metic operations and in accessing memory-based variables. Four 16-bit segment registers (CS,
DS, SS and ES) allow simple memory partitioning to aid modular programming. The status and
control registers consist of an Instruction Pointer (IP) and the Processor Status Word (PSW) reg-
ister, which contains flag bits. Figure 2-1 is a simplified CPU block diagram.
Summary of Contents for 80C186XL
Page 1: ...80C186XL 80C188XL Microprocessor User s Manual...
Page 2: ...80C186XL 80C188XL Microprocessor User s Manual 1995...
Page 18: ...1 Introduction...
Page 19: ......
Page 27: ......
Page 28: ...2 Overview of the 80C186 Family Architecture...
Page 29: ......
Page 79: ......
Page 80: ...3 Bus Interface Unit...
Page 81: ......
Page 127: ......
Page 128: ...4 Peripheral Control Block...
Page 129: ......
Page 137: ......
Page 138: ...5 ClockGenerationand Power Management...
Page 139: ......
Page 154: ...6 Chip Select Unit...
Page 155: ......
Page 178: ...7 Refresh Control Unit...
Page 179: ......
Page 193: ......
Page 194: ...8 Interrupt Control Unit...
Page 195: ......
Page 227: ......
Page 228: ...9 Timer Counter Unit...
Page 229: ......
Page 253: ......
Page 254: ...10 Direct Memory Access Unit...
Page 255: ......
Page 283: ......
Page 284: ...11 Math Coprocessing...
Page 285: ......
Page 302: ...12 ONCE Mode...
Page 303: ......
Page 306: ...A 80C186 Instruction Set Additions and Extensions...
Page 307: ......
Page 318: ...B Input Synchronization...
Page 319: ......
Page 322: ...C Instruction Set Descriptions...
Page 323: ......
Page 371: ......
Page 372: ...D Instruction Set Opcodes and Clock Cycles...
Page 373: ......
Page 396: ...Index...
Page 397: ......