1-4
T60 Transformer Protection System
GE Multilin
1.2 UR OVERVIEW
1 GETTING STARTED
1
The
direct inputs and outputs
provide a means of sharing digital point states between a number of UR-series intelligent
electronic devices (IEDs) over dedicated fiber, RS422, or G.703 interface. No switching equipment is required as the IEDs
are connected directly in a ring or redundant (dual) ring configuration. This feature is optimized for speed and intended for
pilot-aided schemes, distributed logic applications, or the extension of the input/output capabilities of a single relay chassis.
1.2.3 SOFTWARE ARCHITECTURE
Firmware is the software embedded in the relay in functional modules that can be installed in any relay as required. This is
achieved with object-oriented design and programming (OOD/OOP) techniques.
Object-oriented techniques involve the use of
objects
and
classes
. An object is defined as “a logical entity that contains
both data and code that manipulates data.” A class is the generalized form of similar objects. By using this approach, one
can create a protection class with the protection elements as objects of the class, such as time overcurrent, instantaneous
overcurrent, current differential, undervoltage, overvoltage, underfrequency, and distance. These objects represent com-
pletely self-contained software modules. The same object-class concept can be used for metering, input/output control,
software interface, communications, or any functional entity in the system.
Employing OOD/OOP in the software architecture of the T60 achieves the same features as the hardware architecture:
modularity, scalability, and flexibility. The application software for any UR-series device (for example, feeder protection,
transformer protection, distance protection) is constructed by combining objects from the various functional classes. This
results in a common interface across the UR series.
Summary of Contents for T60
Page 6: ...vi T60 Transformer Protection System GE Multilin TABLE OF CONTENTS ...
Page 14: ...xiv T60 Transformer Protection System GE Multilin TABLE OF CONTENTS ...
Page 34: ...1 20 T60 Transformer Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 490: ...5 344 T60 Transformer Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 522: ...6 32 T60 Transformer Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Page 536: ...7 14 T60 Transformer Protection System GE Multilin 7 1 COMMANDS 7 COMMANDS AND TARGETS 7 ...
Page 568: ...10 12 T60 Transformer Protection System GE Multilin 10 6 DISPOSAL 10 MAINTENANCE 10 ...
Page 596: ...A 28 T60 Transformer Protection System GE Multilin A 1 PARAMETER LISTS APPENDIX A A ...
Page 716: ...B 120 T60 Transformer Protection System GE Multilin B 4 MEMORY MAPPING APPENDIX B B ...
Page 762: ...E 10 T60 Transformer Protection System GE Multilin E 1 IEC 60870 5 104 PROTOCOL APPENDIX E E ...
Page 774: ...F 12 T60 Transformer Protection System GE Multilin F 2 DNP POINT LISTS APPENDIX F F ...