GE Multilin
T60 Transformer Protection System
5-251
5 SETTINGS
5.6 GROUPED ELEMENTS
5
Two schemes are provided: one for three-pole tripping only (identified by the name “3BF”) and one for three pole plus sin-
gle-pole operation (identified by the name “1BF”). The philosophy used in these schemes is identical. The operation of a
breaker failure element includes three stages: initiation, determination of a breaker failure condition, and output.
INITIATION STAGE:
A FlexLogic operand representing the protection trip signal initially sent to the breaker must be selected to initiate the
scheme. The initiating signal should be sealed-in if primary fault detection can reset before the breaker failure timers have
finished timing. The seal-in is supervised by current level, so it is reset when the fault is cleared. If desired, an incomplete
sequence seal-in reset can be implemented by using the initiating operand to also initiate a FlexLogic timer, set longer than
any breaker failure timer, whose output operand is selected to block the breaker failure scheme.
Schemes can be initiated either directly or with current level supervision. It is particularly important in any application to
decide if a current-supervised initiate is to be used. The use of a current-supervised initiate results in the breaker failure ele-
ment not being initiated for a breaker that has very little or no current flowing through it, which may be the case for trans-
former faults. For those situations where it is required to maintain breaker fail coverage for fault levels below the
BF1 PH
AMP SUPV PICKUP
or the
BF1 N AMP SUPV PICKUP
setting, a current supervised initiate should
not
be used. This feature
should be utilized for those situations where coordinating margins may be reduced when high speed reclosing is used.
Thus, if this choice is made, fault levels must always be above the supervision pickup levels for dependable operation of
the breaker fail scheme. This can also occur in breaker-and-a-half or ring bus configurations where the first breaker closes
into a fault; the protection trips and attempts to initiate breaker failure for the second breaker, which is in the process of
closing, but does not yet have current flowing through it.
When the scheme is initiated, it immediately sends a trip signal to the breaker initially signaled to trip (this feature is usually
described as re-trip). This reduces the possibility of widespread tripping that results from a declaration of a failed breaker.
DETERMINATION OF A BREAKER FAILURE CONDITION:
The schemes determine a breaker failure condition via three
paths
. Each of these paths is equipped with a time delay, after
which a failed breaker is declared and trip signals are sent to all breakers required to clear the zone. The delayed paths are
associated with breaker failure timers 1, 2, and 3, which are intended to have delays increasing with increasing timer num-
bers. These delayed paths are individually enabled to allow for maximum flexibility.
Timer 1 logic (early path) is supervised by a fast-operating breaker auxiliary contact. If the breaker is still closed (as indi-
cated by the auxiliary contact) and fault current is detected after the delay interval, an output is issued. Operation of the
breaker auxiliary switch indicates that the breaker has mechanically operated. The continued presence of current indicates
that the breaker has failed to interrupt the circuit.
Timer 2 logic (main path) is not supervised by a breaker auxiliary contact. If fault current is detected after the delay interval,
an output is issued. This path is intended to detect a breaker that opens mechanically but fails to interrupt fault current; the
logic therefore does not use a breaker auxiliary contact.
The timer 1 and 2 paths provide two levels of current supervision, high-set and low-set, that allow the supervision level to
change from a current which flows before a breaker inserts an opening resistor into the faulted circuit to a lower level after
resistor insertion. The high-set detector is enabled after timeout of timer 1 or 2, along with a timer that will enable the low-
set detector after its delay interval. The delay interval between high-set and low-set is the expected breaker opening time.
Both current detectors provide a fast operating time for currents at small multiples of the pickup value. The overcurrent
detectors are required to operate after the breaker failure delay interval to eliminate the need for very fast resetting overcur-
rent detectors.
Timer 3 logic (slow path) is supervised by a breaker auxiliary contact and a control switch contact used to indicate that the
breaker is in or out-of-service, disabling this path when the breaker is out-of-service for maintenance. There is no current
level check in this logic as it is intended to detect low magnitude faults and it is therefore the slowest to operate.
OUTPUT:
The outputs from the schemes are:
•
FlexLogic operands that report on the operation of portions of the scheme
•
FlexLogic operand used to re-trip the protected breaker
•
FlexLogic operands that initiate tripping required to clear the faulted zone. The trip output can be sealed-in for an
adjustable period.
•
Target message indicating a failed breaker has been declared
•
Illumination of the faceplate Trip LED (and the Phase A, B or C LED, if applicable)
Summary of Contents for T60
Page 6: ...vi T60 Transformer Protection System GE Multilin TABLE OF CONTENTS ...
Page 14: ...xiv T60 Transformer Protection System GE Multilin TABLE OF CONTENTS ...
Page 34: ...1 20 T60 Transformer Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 490: ...5 344 T60 Transformer Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 522: ...6 32 T60 Transformer Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Page 536: ...7 14 T60 Transformer Protection System GE Multilin 7 1 COMMANDS 7 COMMANDS AND TARGETS 7 ...
Page 568: ...10 12 T60 Transformer Protection System GE Multilin 10 6 DISPOSAL 10 MAINTENANCE 10 ...
Page 596: ...A 28 T60 Transformer Protection System GE Multilin A 1 PARAMETER LISTS APPENDIX A A ...
Page 716: ...B 120 T60 Transformer Protection System GE Multilin B 4 MEMORY MAPPING APPENDIX B B ...
Page 762: ...E 10 T60 Transformer Protection System GE Multilin E 1 IEC 60870 5 104 PROTOCOL APPENDIX E E ...
Page 774: ...F 12 T60 Transformer Protection System GE Multilin F 2 DNP POINT LISTS APPENDIX F F ...