187
11054A–ATARM–27-Jul-11
SAM9X25
187
11054A–ATARM–27-Jul-11
SAM9X25
wait (MCKRDY=1)
The Master Clock is main clock divided by 16.
The Processor Clock is the Master Clock.
5.
Selection of Programmable clocks
Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.
Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. Depending on the system used, 2 programmable clocks can be enabled or dis-
abled. The PMC_SCSR provides a clear indication as to which Programmable clock is
enabled. By default all Programmable clocks are disabled.
PMC_PCKx registers are used to configure programmable clocks.
The CSS and CSSMCK fields are used to select the programmable clock divider source.
Five clock options are available: main clock, slow clock, master clock, PLLACK, UPLLCK.
By default, the clock source selected is slow clock.
The PRES field is used to control the programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 1 which means
that master clock is equal to slow clock.
Once the PMC_PCKx register has been programmed, The corresponding programmable
clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in
the PMC_SR register. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the
PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.
If the CSS and PRES parameters are to be modified, the corresponding programmable
clock must be disabled first. The parameters can then be modified. Once this has been
done, the user must re-enable the programmable clock and wait for the PCKRDYx bit to be
set.
Code Example:
write_register(PMC_PCK0,0x00000015)
Programmable clock 0 is main clock divided by 32.
6.
Enabling Peripheral Clocks
Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled via registers PMC_PCER and PMC_PCDR.
Depending on the system used, 19 peripheral clocks can be enabled or disabled. The
PMC_PCR provides a clear view as to which peripheral clock is enabled.
Note:
Each enabled peripheral clock corresponds to Master Clock.
Code Examples:
write_register(PMC_PCER,0x00000110)
Peripheral clocks 4 and 8 are enabled.
write_register(PMC_PCDR,0x00000010)
Summary of Contents for SAM9X25
Page 26: ...26 11054A ATARM 27 Jul 11 SAM9X25...
Page 138: ...138 11054A ATARM 27 Jul 11 SAM9X25 138 11054A ATARM 27 Jul 11 SAM9X25...
Page 162: ...162 11054A ATARM 27 Jul 11 SAM9X25 162 11054A ATARM 27 Jul 11 SAM9X25...
Page 216: ...216 11054A ATARM 27 Jul 11 SAM9X25 216 11054A ATARM 27 Jul 11 SAM9X25...
Page 266: ...266 11054A ATARM 27 Jul 11 SAM9X25 266 11054A ATARM 27 Jul 11 SAM9X25...
Page 330: ...330 11054A ATARM 27 Jul 11 SAM9X25 330 11054A ATARM 27 Jul 11 SAM9X25...
Page 374: ...374 11054A ATARM 27 Jul 11 SAM9X25...
Page 468: ...468 11054A ATARM 27 Jul 11 SAM9X25 468 11054A ATARM 27 Jul 11 SAM9X25...
Page 532: ...532 11054A ATARM 27 Jul 11 SAM9X25 532 11054A ATARM 27 Jul 11 SAM9X25...
Page 692: ...692 11054A ATARM 27 Jul 11 SAM9X25 692 11054A ATARM 27 Jul 11 SAM9X25...
Page 777: ...777 11054A ATARM 27 Jul 11 SAM9X25 777 11054A ATARM 27 Jul 11 SAM9X25...
Page 886: ...886 11054A ATARM 27 Jul 11 SAM9X25 886 11054A ATARM 27 Jul 11 SAM9X25...
Page 962: ...962 11054A ATARM 27 Jul 11 SAM9X25 962 11054A ATARM 27 Jul 11 SAM9X25...
Page 1036: ...1036 11054A ATARM 27 Jul 11 SAM9X25 1036 11054A ATARM 27 Jul 11 SAM9X25...
Page 1128: ...1128 11054A ATARM 27 Jul 11 SAM9X25 1128 11054A ATARM 27 Jul 11 SAM9X25...
Page 1130: ...1130 11054A ATARM 27 Jul 11 SAM9X25...
Page 1132: ...1132 11054A ATARM 27 Jul 11 SAM9X25...
Page 1144: ...xii 11054A ATARM 27 Jul 11 SAM9X25...