![Micronas SDA 6000 User Manual Download Page 31](http://html1.mh-extra.com/html/micronas/sda-6000/sda-6000_user-manual_1787802031.webp)
SDA 6000
PRELIMINARY DATA SHEET
Version 2.1
Architectural Overview
3 - 4
Micronas
The architecture of M2 comprises of a 16-bit microcontroller which is derived from the
well known Infineon Technologies C16x controller family. Due to the core philosophy of
M2, the architecture of the CPU core is the same as described in other Infineon
Technologies C16x derivatives.
The
CPU,
with its peripherals, can be used on one hand to perform all TV controlling
tasks, and on the other hand to process the data, sliced by the slicer, and the acquisition
unit according to the TTX standard. Furthermore it is used to generate an “instruction list”
for the graphic accelerator which supports the CPU by generating the display.
M2 has integrated two digital
slicers
for two independent CVBS signals. One slicer is
used to capture the data (e.g. Teletext or EPG) from the main channel, the other slicer
can be used to slice the WSS information from a different channel, which is helpful e.g.
to support PIP applications in 16:9 TVs. Both slicers separate the data from the analog
signal and perform the bit synchronization and framing code selection before the data is
stored in a programmable VBI buffer in the external RAM. Capturing and storing the raw
data in the RAM does not need any CPU power.
M2’s display concept has improved in comparison to the common known state of the art
Teletext-ICs. The display concept is based on a pixel orientated attribute definition
instead of the former character orientated attribute definition.
For the processing of this new pixel based attribute definition the display generator
architecture is divided in two subblocks: the graphic accelerator (GA) and the screen
refresh unit (SRU).
The
graphic accelerator
is used to modify the frame buffer. From an abstract point of
view, the graphic accelerator is a DMA which is optimized for OSD functionality, so e.g.
bitmaps can be copied to the frame buffer. The graphic accelerator is used to draw
rectangles, parallelograms, horizontal, vertical and diagonal lines. The user does not
need to access the graphic accelerator directly, thanks to an easy to handle SW-GDI
function which is available with the M2 hardware.
The DMA functionality of the display generator (DG) supports the pixel transfer between
any address of entire external memory. The teletext and graphic capabilities can be used
simultaneously, so that M2 can combine teletext information with e.g. background
images and advanced high resolution OSD graphics.
M2 uses the frame buffer located in external memory so every bitmap can be placed at
any location on the screen. The contents of the frame buffer does not have to be set up
in real time. The duration of the set up of the screen depends on the contents of the
displayed information.
M2 supports two hardware display layers. To refresh the screen the M2 reads and mixes
two independent pixel sources simultaneously.
Different formats of the pixels which are part of different applications (e.g. Teletext
formats, 12-bit RGB or 16-bit RGB values) can be stored in the same frame buffer at the
same time.
Summary of Contents for SDA 6000
Page 3: ...Contents Overview...
Page 21: ...Pin Description...
Page 22: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Pin Descriptions 2 3 Micronas 2 Pin Descriptions...
Page 29: ...Architectural Overview...
Page 33: ...C16X Microcontroller...
Page 88: ...Interrupt and Trap Function...
Page 122: ...System Control Configuration...
Page 159: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 System Control Configuration 6 40 Micronas...
Page 160: ...Peripherals...
Page 282: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Peripherals 7 124 Micronas...
Page 283: ...Clock System...
Page 284: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Clock System 8 3 Micronas 8 Clock System...
Page 288: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Clock System 8 8 Micronas...
Page 289: ...Sync System...
Page 290: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Sync System 9 3 Micronas 9 Sync System...
Page 301: ...Display Generator...
Page 348: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Display Generator 10 50 Micronas...
Page 349: ...D A Converter...
Page 352: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 D A Converter 11 6 Micronas...
Page 353: ...Slicer and Acquisition...
Page 381: ...Register Overview...
Page 398: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Register Overview 13 20 Micronas...
Page 399: ...Elelctrical Characteristics...
Page 411: ...SDA 6000 PRELIMINARY DATA SHEET Version 2 1 Electrical Characteristics 14 14 Micronas...