Chapter 4 Parameters
4-62
When the AC motor drive is controlled by external terminal, please refer to Pr.02.05/Pr.04.04
for details.
02.10
Combination of the First and Second Master Frequency
Command
Factory Setting: 0
Settings
0
First Master Frequency Command Only
1
First Master Fre Second Master Frequency
2
First Master Frequency - Second Master Frequency
It can be used to add or subtract the first frequency set in Pr.02.00 and the second frequency
set in Pr.02.09 to meet the customers’ application. For example, if the master frequency is the
first frequency, speed source, controlled by ACI (DC 4~20mA) and the second frequency,
press source, is controlled by AVI (DC 0~+10V). These two frequencies can be added or
subtracted by Pr.02.10.
Related parameters: Pr.02.00(Source of First Master Frequency Command) and
Pr.02.09(Source of Second Frequency Command ).
02.02
Stop Method
Factory Setting: 0
Settings
0
STOP: ramp to stop
E.F.: coast to stop
1
STOP: coast to stop
E.F.: coast to stop
2
STOP: ramp to stop
E.F.: ramp to stop
3
STOP: coast to stop
E.F.: ramp to stop
When the 2
nd
switch on the upper-right corner is set to be ON as shown in the following
diagram, the motor stop method (Pr.02.02) will force setting to 1. This setting (Pr.02.02) can’t
be changed till the 2nd switch is set to be OFF.
ON
1
2
3
E.F. is external fault. It can be triggered by setting one of Pr.04.05~04.08 to 14. When the AC
motor drive receives the trigger, it will stop output immediately and display EF on the keypad.
The motor won’t run till the fault is cleared (enter “RESET).
The parameter determines how the motor is stopped when the AC motor drive receives a valid
stop command or detects External Fault.
Ramp:
the AC motor drive decelerates to Minimum Output Frequency (Pr.01.05)
according to the deceleration time(Pr.01.10 and Pr.01.12) and then stops.
Coast:
the AC motor drive stops the output instantly upon command, and the motor
free runs until it comes to a complete standstill.
The motor stop method is usually determined by the characteristics of the motor load and
how frequently it is stopped.