⎯
13
⎯
6 F 2 S 0 8 4 6
Figure 2.1.2.1 Protection Zones
(a)
(b)
Figure 2.1.2.2 Protection Zone and CB, CT
c) Reliability: The protection relay is normally in a quiescent state and is available to respond to
faults that may occur on the power system in the protection zone.
In order that this may be achieved the availability of the protection relay is
checked even in its quiescent state.
A fundamental requirement to ensure that the reliability of the protection relay is
high is that its components must be extremely reliable. This can be achieved by
using high quality components and reducing the number of components. The
GRZ100 reduces the number of parts by using state-of-the-art highly integrated
semiconductor components.
To maintain high reliability, not only must the relay have a robust hardware
structure but it is also important to detect any fault immediately and not to leave
the relay in a faulted state for prolonged periods. Therefore, the GRZ100 is
equipped with an automatic supervision function. Whenever a hardware fault
occurs, an alarm is issued to inform the operator of the problem to permit
remedial action.
In order to dramatically improve the operating reliability of the relay in the event
of a system fault, there are two options: to use a protection relay with a
duplicated protection system or to provide an additional fault detection relay
within the relay with AND logic.
Line
Line
Busbar
Busbar
:Circuit Breaker
Busbar
Busbar
Busbar
Line
Line
Summary of Contents for GRZ100 B Series
Page 264: ... 263 6 F 2 S 0 8 4 6 Appendix A Block Diagram ...
Page 271: ... 270 6 F 2 S 0 8 4 6 ...
Page 272: ... 271 6 F 2 S 0 8 4 6 Appendix B Signal List ...
Page 307: ... 306 6 F 2 S 0 8 4 6 ...
Page 308: ... 307 6 F 2 S 0 8 4 6 Appendix C Variable Timer List ...
Page 310: ... 309 6 F 2 S 0 8 4 6 Appendix D Binary Input Output Default Setting List ...
Page 321: ... 320 6 F 2 S 0 8 4 6 ...
Page 322: ... 321 6 F 2 S 0 8 4 6 Appendix E Details of Relay Menu and LCD Button Operation ...
Page 331: ... 330 6 F 2 S 0 8 4 6 ...
Page 340: ... 339 6 F 2 S 0 8 4 6 Appendix G Typical External Connections ...
Page 377: ... 376 6 F 2 S 0 8 4 6 ...
Page 384: ... 383 6 F 2 S 0 8 4 6 Appendix J Return Repair Form ...
Page 388: ... 387 6 F 2 S 0 8 4 6 Customer Name Company Name Address Telephone No Facsimile No Signature ...
Page 389: ... 388 6 F 2 S 0 8 4 6 ...
Page 390: ... 389 6 F 2 S 0 8 4 6 Appendix K Technical Data ...
Page 401: ... 400 6 F 2 S 0 8 4 6 ...
Page 402: ... 401 6 F 2 S 0 8 4 6 Appendix L Symbols Used in Scheme Logic ...
Page 405: ... 404 6 F 2 S 0 8 4 6 ...
Page 406: ... 405 6 F 2 S 0 8 4 6 Appendix M Example of Setting Calculation ...
Page 417: ... 416 6 F 2 S 0 8 4 6 ...
Page 418: ... 417 6 F 2 S 0 8 4 6 Appendix N IEC60870 5 103 Interoperability and Troubleshooting ...
Page 434: ... 433 6 F 2 S 0 8 4 6 Appendix P Inverse Time Characteristics ...
Page 437: ... 436 6 F 2 S 0 8 4 6 ...
Page 438: ... 437 6 F 2 S 0 8 4 6 Appendix Q Failed Module Tracing and Replacement ...
Page 444: ... 443 6 F 2 S 0 8 4 6 Appendix R Ordering ...
Page 447: ......