
⎯
163
⎯
6 F 2 S 0 8 4 6
3.4 Recording
Function
The GRZ100 is provided with the following recording functions:
Fault
recording
Event
recording
Disturbance
recording
These records are displayed on the LCD of the relay front panel or on the local or remote PC. For
samples of LCD screen, see Section 4.2.
3.4.1 Fault
Recording
Fault recording is started by a tripping command of the GRZ100, a tripping command of the
external main protection or PLC command by user-setting (max. 4) and the following items are
recorded for one fault:
Date and time of fault occurrence
Faulted
phase
Tripping
phase
Tripping
mode
Fault
location
Relevant
events
Power system quantities
Up to 8 most-recent faults are stored as fault records. If a new fault occurs when 8 faults have been
stored, the record of the oldest fault is deleted and the record of the latest fault is then stored.
Date and time of fault occurrence
The time resolution is 1 ms using the relay internal clock.
To be precise, this is the time at which a tripping command has been output, and thus it is
approximately 10 ms after the occurrence of the fault.
Fault phase
The faulted phase is displayed when tripping by a distance measuring element. The fault phase is
determined by the "fault phase detection logic". However, the fault phase depends on the setting of
the phase selection element UVC.
In case of the tripping by a backup protection, the fault phase is not displayed and the "---" marked
is displayed.
Tripping phase
This is the phase to which a tripping command is output.
Tripping mode
This shows the protection scheme that the tripping command is output.
Fault location
The fault location is displayed against the fault within the protected line tripped by a distance
measuring element. The distance to the fault point calculated by the fault locator is recorded.
Summary of Contents for GRZ100 B Series
Page 264: ... 263 6 F 2 S 0 8 4 6 Appendix A Block Diagram ...
Page 271: ... 270 6 F 2 S 0 8 4 6 ...
Page 272: ... 271 6 F 2 S 0 8 4 6 Appendix B Signal List ...
Page 307: ... 306 6 F 2 S 0 8 4 6 ...
Page 308: ... 307 6 F 2 S 0 8 4 6 Appendix C Variable Timer List ...
Page 310: ... 309 6 F 2 S 0 8 4 6 Appendix D Binary Input Output Default Setting List ...
Page 321: ... 320 6 F 2 S 0 8 4 6 ...
Page 322: ... 321 6 F 2 S 0 8 4 6 Appendix E Details of Relay Menu and LCD Button Operation ...
Page 331: ... 330 6 F 2 S 0 8 4 6 ...
Page 340: ... 339 6 F 2 S 0 8 4 6 Appendix G Typical External Connections ...
Page 377: ... 376 6 F 2 S 0 8 4 6 ...
Page 384: ... 383 6 F 2 S 0 8 4 6 Appendix J Return Repair Form ...
Page 388: ... 387 6 F 2 S 0 8 4 6 Customer Name Company Name Address Telephone No Facsimile No Signature ...
Page 389: ... 388 6 F 2 S 0 8 4 6 ...
Page 390: ... 389 6 F 2 S 0 8 4 6 Appendix K Technical Data ...
Page 401: ... 400 6 F 2 S 0 8 4 6 ...
Page 402: ... 401 6 F 2 S 0 8 4 6 Appendix L Symbols Used in Scheme Logic ...
Page 405: ... 404 6 F 2 S 0 8 4 6 ...
Page 406: ... 405 6 F 2 S 0 8 4 6 Appendix M Example of Setting Calculation ...
Page 417: ... 416 6 F 2 S 0 8 4 6 ...
Page 418: ... 417 6 F 2 S 0 8 4 6 Appendix N IEC60870 5 103 Interoperability and Troubleshooting ...
Page 434: ... 433 6 F 2 S 0 8 4 6 Appendix P Inverse Time Characteristics ...
Page 437: ... 436 6 F 2 S 0 8 4 6 ...
Page 438: ... 437 6 F 2 S 0 8 4 6 Appendix Q Failed Module Tracing and Replacement ...
Page 444: ... 443 6 F 2 S 0 8 4 6 Appendix R Ordering ...
Page 447: ......