
⎯
36
⎯
6 F 2 S 0 8 4 6
Zone 3 setting
Zone 3, in cooperation with zone 2, affords backup protection for faults that have occurred on
adjacent lines. The reach should be set to exceed the remote end of the longest adjacent line
whenever possible. It is also necessary to take into account the effect of fault infeed at the remote
busbars. If an ideal reach setting as shown in Figure 2.4.1.9 is possible, the timer setting for zone 3
needs only to consider the coordination with the timer setting in zone 2 of the protected lines and
adjacent lines.
However, as shown in Figure 2.4.1.11, if there are short-distance adjacent lines and it is
impossible to establish coordination only by the reach setting, there may also be a case where the
time delay for zone 3 will need to be set greater than that of the adjacent lines.
The zone 3 reach is set on the characteristic angle when the mho characteristic is selected or set on
the X axis when the quadrilateral characteristic is selected.
Figure 2.4.1.11 Zone 3 Setting (When one of the adjacent lines is very short)
Zone F setting
When zone F is used for the zone 3 instead of Z3, above zone 3 setting is applied. If the zone F is
used separately from zone 3, the settings of zone F reach and time delay are set to be less than the
zone 3 settings.
Zone R1 setting
The setting of the zone R1 reach is set so as to exceed the end of the adjacent line behind the
relaying point. The reach is set on the X-axis. The time delay is set to be greater than that of the
zone 3 backup protection. The scheme switch [ZR1BT] is set to “ON”, and the scheme switch
[ZR2BT] must be set to “ON” and the zone R2 reach must be set greater than the zone R1 reach
even though the zone R2 is not used.
Zone R2 setting
The setting of the zone R2 reach is set so as to include the busbar of the adjacent terminal behind
the relaying point. The time delay is set to be greater than that of the zone R1.
The zone R2 reach is set on the characteristic angle when the mho characteristic is selected or set
on the X axis when the quadrilateral characteristic is selected. The scheme switch [ZR2BT] is set
to “ON”.
Zone ND setting
The setting of the zone ND reach is set so as to include all zone settings and the time delay is set
the greatest of all zones. The scheme switch [ZNDBT] is set to “ON”.
Zone 2
T3'
T3
Zone 2
Zone 1
Zone 1
C
B
A
D
Zone 3
Zone 3
Summary of Contents for GRZ100 B Series
Page 264: ... 263 6 F 2 S 0 8 4 6 Appendix A Block Diagram ...
Page 271: ... 270 6 F 2 S 0 8 4 6 ...
Page 272: ... 271 6 F 2 S 0 8 4 6 Appendix B Signal List ...
Page 307: ... 306 6 F 2 S 0 8 4 6 ...
Page 308: ... 307 6 F 2 S 0 8 4 6 Appendix C Variable Timer List ...
Page 310: ... 309 6 F 2 S 0 8 4 6 Appendix D Binary Input Output Default Setting List ...
Page 321: ... 320 6 F 2 S 0 8 4 6 ...
Page 322: ... 321 6 F 2 S 0 8 4 6 Appendix E Details of Relay Menu and LCD Button Operation ...
Page 331: ... 330 6 F 2 S 0 8 4 6 ...
Page 340: ... 339 6 F 2 S 0 8 4 6 Appendix G Typical External Connections ...
Page 377: ... 376 6 F 2 S 0 8 4 6 ...
Page 384: ... 383 6 F 2 S 0 8 4 6 Appendix J Return Repair Form ...
Page 388: ... 387 6 F 2 S 0 8 4 6 Customer Name Company Name Address Telephone No Facsimile No Signature ...
Page 389: ... 388 6 F 2 S 0 8 4 6 ...
Page 390: ... 389 6 F 2 S 0 8 4 6 Appendix K Technical Data ...
Page 401: ... 400 6 F 2 S 0 8 4 6 ...
Page 402: ... 401 6 F 2 S 0 8 4 6 Appendix L Symbols Used in Scheme Logic ...
Page 405: ... 404 6 F 2 S 0 8 4 6 ...
Page 406: ... 405 6 F 2 S 0 8 4 6 Appendix M Example of Setting Calculation ...
Page 417: ... 416 6 F 2 S 0 8 4 6 ...
Page 418: ... 417 6 F 2 S 0 8 4 6 Appendix N IEC60870 5 103 Interoperability and Troubleshooting ...
Page 434: ... 433 6 F 2 S 0 8 4 6 Appendix P Inverse Time Characteristics ...
Page 437: ... 436 6 F 2 S 0 8 4 6 ...
Page 438: ... 437 6 F 2 S 0 8 4 6 Appendix Q Failed Module Tracing and Replacement ...
Page 444: ... 443 6 F 2 S 0 8 4 6 Appendix R Ordering ...
Page 447: ......