
Section 12 Bus State Controller (BSC)
Rev. 4.00 Sep. 14, 2005 Page 387 of 982
REJ09B0023-0400
The burst ROM interface performs burst operations for all read accesses. For example, in a
longword access over a 16-bit bus, valid 16-bit data is read two times and invalid 16-bit data is
read six times. These invalid data read cycles increase the memory access time and degrade the
program execution speed and DMA transfer speed. To prevent this problem, it is recommend
using a 16-byte read by cache fill or 16-byte read by the DMAC. Thus, the burst ROM (clock
synchronous) should be accessed with the cache having been set on. The burst ROM interface
performs write accesses in the same way as normal space access.
Twb
T1
T2
Tw
T2B
Tw
T2B
Twb
Twb
T2B
T2B
Twb
Twb
T2B
T2B
Twb
T2B
Twb
Note:
*
The waveform for
DACKn
is when active low is specified.
CKIO
D31 to D0
A25 to A0
FRAME
CS6B
RD/
WR
WAIT
BS
DACKn
*
Figure 12.47 Burst ROM Access Timing (Clock Synchronous)
(Burst Length = 8, Wait Cycles Inserted in First Access = 2,
Wait Cycles Inserted in Second and Subsequent Accesses = 1)
12.5.11 Wait between Access Cycles
As the operating frequency of LSIs becomes higher, the off-operation of the data buffer often
collides with the next data access when the read operation from devices with slow access speed is
completed. As a result of these collisions, the reliability of the device is low and malfunctions may
occur. A function that avoids data collisions by inserting wait cycles between continuous access
cycles has been newly added.
The number of wait cycles between access cycles can be set by bits IWW2 to IWW0, IWRWD2 to
IWRWD0, IWRWS2 to IWRWS0, IWRRD2 to IWRRD0, and IWRRS2 to IWRRS 0 in the
CSnBCR register , and bit DMAIW2 to DMAIW0 and DMAIWA in CMNCR. The conditions for
setting the wait cycles between access cycles (idle cycles) are shown below.
1. Continuous accesses are write-read or write-write
2. Continuous accesses are read-write for different spaces
3. Continuous accesses are read-write for the same space
4. Continuous accesses are read-read for different spaces
5. Continuous accesses are read-read for the same space
Summary of Contents for HD6417641
Page 2: ...Rev 4 00 Sep 14 2005 Page ii of l...
Page 7: ...Rev 4 00 Sep 14 2005 Page vii of l...
Page 11: ...Rev 4 00 Sep 14 2005 Page xi of l USB Universal serial bus WDT Watch dog timer...
Page 12: ...Rev 4 00 Sep 14 2005 Page xii of l...
Page 28: ...Rev 4 00 Sep 14 2005 Page xxviii of l...
Page 204: ...Section 4 Clock Pulse Generator CPG Rev 4 00 Sep 14 2005 Page 154 of 982 REJ09B0023 0400...
Page 212: ...Section 5 Watchdog Timer WDT Rev 4 00 Sep 14 2005 Page 162 of 982 REJ09B0023 0400...
Page 228: ...Section 6 Power Down Modes Rev 4 00 Sep 14 2005 Page 178 of 982 REJ09B0023 0400...
Page 246: ...Section 8 X Y Memory Rev 4 00 Sep 14 2005 Page 196 of 982 REJ09B0023 0400...
Page 318: ...Section 11 User Break Controller UBC Rev 4 00 Sep 14 2005 Page 268 of 982 REJ09B0023 0400...
Page 454: ...Section 12 Bus State Controller BSC Rev 4 00 Sep 14 2005 Page 404 of 982 REJ09B0023 0400...
Page 504: ...Section 14 U Memory Rev 4 00 Sep 14 2005 Page 454 of 982 REJ09B0023 0400...
Page 566: ...Section 17 Compare Match Timer CMT Rev 4 00 Sep 14 2005 Page 516 of 982 REJ09B0023 0400...
Page 868: ...Section 21 A D Converter Rev 4 00 Sep 14 2005 Page 818 of 982 REJ09B0023 0400...
Page 914: ...Section 23 I O Ports Rev 4 00 Sep 14 2005 Page 864 of 982 REJ09B0023 0400...
Page 956: ...Section 24 List of Registers Rev 4 00 Sep 14 2005 Page 906 of 982 REJ09B0023 0400...
Page 1016: ...Section 25 Electrical Characteristics Rev 4 00 Sep 14 2005 Page 966 of 982 REJ09B0023 0400...
Page 1024: ...Appendix Rev 4 00 Sep 14 2005 Page 974 of 982 REJ09B0023 0400...
Page 1032: ...Rev 4 00 Sep 14 2005 Page 982 of 982 REJ09B0023 0400 X X Y data addressing 52 X Y memory 193...
Page 1035: ......
Page 1036: ...SH7641 Hardware Manual...