19
Installing
the Inverter
•
Figures in this manual are shown with covers or circuit breakers removed to show a more
detailed view of the installation arrangements. Install covers and circuit breakers before
operating the inverter. Operate the product according to the instructions in this manual.
•
Do not start or stop the inverter using a magnetic contactor installed on the input power
supply.
•
If the inverter is damaged and loses control, the machine may cause a dangerous
situation. Install an additional safety device such as an emergency brake to prevent these
situations.
•
High levels of current draw during power-on can affect the system. Ensure that correctly
rated circuit breakers are installed to operate safely during power-on situations.
•
Reactors can be installed to improve the power factor. Note that reactors may be installed
within 32.8 ft (10 m) from the power source if the input power exceeds 600 kVA. Refer to
11.5 Fuse and Reactors Specifications
on page
and carefully select a reactor that
meets the requirements.
2.1 Mounting the Inverter
Mount the inverter on a wall or inside a panel following the procedures provided below.
Before installation, ensure that there is sufficient space to meet the clearance specifications,
and that there are no obstacles impeding the cooling fan’s air flow.
Select a wall or panel suitable to support the installation. Refer to
and check the inverter’s mounting bracket dimensions.
1
Use a level to draw a horizontal line on the mounting surface, and then carefully mark
the fixing points.
2
Drill the two upper mounting bolt holes, and then install the mounting bolts. Do not fully
tighten the bolts at this time. Fully tighten the mounting bolts after the inverter has been
mounted.
3
Mount the inverter on the wall or inside a panel using the two upper bolts, and then fully
tighten the upper mounting bolts.
200[V] : 0.75~18.5kW, 400[V] : 0.75~185kW
Summary of Contents for LSLV-H100 Series
Page 17: ...Preparing the Installation 4 37 90 kW 3 Phase ...
Page 18: ...Preparing the Installation 5 110 132 kW 3 Phase ...
Page 19: ...Preparing the Installation 6 160 185 kW 3 Phase ...
Page 20: ...Preparing the Installation 7 220 250 kW 3 Phase ...
Page 21: ...Preparing the Installation 8 315 400 kW 3 Phase ...
Page 22: ...Preparing the Installation 9 500 kW 3 Phase ...
Page 35: ...Installing the Inverter 22 ...
Page 50: ...37 Installing the Inverter Input and Output Control Terminal Block Wiring Diagram ...
Page 104: ...91 Learning Basic Features 0 10 V Input Voltage Setting Details V1 Quantizing ...
Page 181: ...168 Learning Advanced Features PID Command Block ...
Page 182: ...169 Learning Advanced Features ...
Page 183: ...170 Learning Advanced Features PID Feedback Block ...
Page 184: ...171 Learning Advanced Features PID Output Block ...
Page 185: ...172 Learning Advanced Features PID Output Mode Block ...
Page 198: ...185 Learning Advanced Features EPID1 Control block ...
Page 199: ...186 Learning Advanced Features EPID2 Control block ...
Page 220: ...207 Learning Advanced Features ...
Page 235: ...222 Learning Advanced Features The Time Chart for the Exception Day ...
Page 506: ...Table of Functions 493 ...
Page 520: ...Table of Functions 507 8 16 4 Cooling Tower MC4 Group ...
Page 549: ...Troubleshooting 536 ...
Page 569: ...Technical Specification 556 11 3 External Dimensions 0 75 30 kW 3 phase 37 90 kW 3 phase ...
Page 570: ...Technical Specification 557 110 185 kW 3 phase ...
Page 601: ...588 ...
Page 602: ...589 ...
Page 603: ...590 ...