5-21
CLOCK GENERATION AND POWER MANAGEMENT
Figure 5-15. Power-Save Clock Transition
5.2.3.2 Leaving Power-Save Mode
Power-Save mode continues until one of three events occurs: execution clears the PSEN bit in
the Power-Save Register, an unmasked interrupt occurs or an NMI occurs.
When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by-two)
at the falling T3
edge of the write to the Power-Save Register. The same result happens from re-
programming the clock divisor to a new value. The Power-Save Register can be read or written
at any time.
Unmasked interrupts include those from the Interrupt Control Unit, but not software interrupts.
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core,
Power-Save mode will end. The PSEN bit clears and the clock resumes full-speed operation at
the falling edge of a bus cycle T3 state. However, the exact bus cycle of the transition is unde-
fined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN bit
again. If you still want Power-Save mode operation, you can set the PSEN bit as part of the inter-
rupt service routine.
5.2.3.3 Example Power-Save Initialization Code
Example 5-2 illustrates programming the Power-Save Unit for a typical system. The program also
includes code to change the DRAM refresh rate to compensate for the reduced clock rate.
CLKOUT
WR
NOTES:
1. : Write to Power-Save Register (as viewed on the bus).
2. : Low-going edge of T3 starts new clock rate.
1
2
T2
T3
T4
A1124-0A
Summary of Contents for 80C186EA
Page 1: ...80C186EA 80C188EA Microprocessor User s Manual...
Page 2: ...80C186EA 80C188EA Microprocessor User s Manual 1995...
Page 19: ......
Page 20: ...1 Introduction...
Page 21: ......
Page 28: ...2 Overview of the 80C186 Family Architecture...
Page 29: ......
Page 79: ......
Page 80: ...3 Bus Interface Unit...
Page 81: ......
Page 129: ......
Page 130: ...4 Peripheral Control Block...
Page 131: ......
Page 139: ......
Page 140: ...5 ClockGenerationand Power Management...
Page 141: ......
Page 165: ......
Page 166: ...6 Chip Select Unit...
Page 167: ......
Page 190: ...7 Refresh Control Unit...
Page 191: ......
Page 205: ......
Page 206: ...8 Interrupt Control Unit...
Page 207: ......
Page 239: ...INTERRUPT CONTROL UNIT 8 32...
Page 240: ...9 Timer Counter Unit...
Page 241: ......
Page 265: ......
Page 266: ...10 Direct Memory Access Unit...
Page 267: ......
Page 295: ...DIRECT MEMORY ACCESS UNIT 10 28...
Page 296: ...11 Math Coprocessing...
Page 297: ......
Page 314: ...12 ONCE Mode...
Page 315: ......
Page 318: ...A 80C186 Instruction Set Additions and Extensions...
Page 319: ......
Page 330: ...B Input Synchronization...
Page 331: ......
Page 334: ...C Instruction Set Descriptions...
Page 335: ......
Page 383: ...INSTRUCTION SET DESCRIPTIONS C 48...
Page 384: ...D Instruction Set Opcodes and Clock Cycles...
Page 385: ......
Page 408: ...Index...
Page 409: ......