8-3
INTERRUPT CONTROL UNIT
8.2.1.1 Interrupt Masking
There are circumstances in which a programmer may need to disable an interrupt source tempo-
rarily (for example, while executing a time-critical section of code or servicing a high-priority
task). This temporary disabling is called interrupt masking. All interrupts from the Interrupt Con-
trol Unit can be masked either globally or individually.
The Interrupt Enable bit in the Processor Status Word globally enables or disables the maskable
interrupt request from the Interrupt Control Unit. The programmer controls the Interrupt Enable
bit with the STI (set interrupt) and CLI (clear interrupt) instructions.
Besides being globally enabled or disabled by the Interrupt Enable bit, each interrupt source can
be individually enabled or disabled. The Interrupt Mask register has a single bit for each interrupt
source. The programming can selectively mask (disable) or unmask (enable) each interrupt
source by setting or clearing the corresponding bit in the Interrupt Mask register.
8.2.1.2 Interrupt Priority
One critical function of the Interrupt Control Unit is to prioritize interrupt requests. When multi-
ple interrupts are pending, priority determines which interrupt request is serviced first. In many
systems, an interrupt handler may itself be interrupted by another interrupt source. This is known
as interrupt nesting. With interrupt nesting, priority determines whether an interrupt source can
preempt an interrupt handler that is currently executing.
Each interrupt source is assigned a priority between zero (highest) and seven (lowest). After reset,
the interrupts default to the priorities shown in Table 8-1. Because the timers share an interrupt
source, they also share a priority. Within the assigned priority, each has a relative priority (Timer
0 has the highest relative priority and Timer 2 has the lowest).
Table 8-1. Default Interrupt Priorities
Interrupt Name
Relative Priority
Timer 0
0 (a)
Timer 1
0 (b)
Timer 2
0 (c)
DMA0
1
DMA1
2
INT0
3
INT1
4
INT2
5
INT3
6
Summary of Contents for 80C186EA
Page 1: ...80C186EA 80C188EA Microprocessor User s Manual...
Page 2: ...80C186EA 80C188EA Microprocessor User s Manual 1995...
Page 19: ......
Page 20: ...1 Introduction...
Page 21: ......
Page 28: ...2 Overview of the 80C186 Family Architecture...
Page 29: ......
Page 79: ......
Page 80: ...3 Bus Interface Unit...
Page 81: ......
Page 129: ......
Page 130: ...4 Peripheral Control Block...
Page 131: ......
Page 139: ......
Page 140: ...5 ClockGenerationand Power Management...
Page 141: ......
Page 165: ......
Page 166: ...6 Chip Select Unit...
Page 167: ......
Page 190: ...7 Refresh Control Unit...
Page 191: ......
Page 205: ......
Page 206: ...8 Interrupt Control Unit...
Page 207: ......
Page 239: ...INTERRUPT CONTROL UNIT 8 32...
Page 240: ...9 Timer Counter Unit...
Page 241: ......
Page 265: ......
Page 266: ...10 Direct Memory Access Unit...
Page 267: ......
Page 295: ...DIRECT MEMORY ACCESS UNIT 10 28...
Page 296: ...11 Math Coprocessing...
Page 297: ......
Page 314: ...12 ONCE Mode...
Page 315: ......
Page 318: ...A 80C186 Instruction Set Additions and Extensions...
Page 319: ......
Page 330: ...B Input Synchronization...
Page 331: ......
Page 334: ...C Instruction Set Descriptions...
Page 335: ......
Page 383: ...INSTRUCTION SET DESCRIPTIONS C 48...
Page 384: ...D Instruction Set Opcodes and Clock Cycles...
Page 385: ......
Page 408: ...Index...
Page 409: ......