6-1
CHAPTER 6
CHIP-SELECT UNIT
Every system requires some form of component-selection mechanism to enable the CPU to ac-
cess a specific memory or peripheral device. The signal that selects the memory or peripheral de-
vice is referred to as a chip-select. Besides selecting a specific device, each chip-select can be
used to control the number of wait states inserted into the bus cycle. Devices that are too slow to
keep up with the maximum bus bandwidth can use wait states to slow the bus down.
6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS
One method of generating chip-selects uses latched address signals directly. An example inter-
face is shown in Figure 6-1(A). In the example, an inverted A16 is connected to an SRAM device
with an active-low chip-select. Any bus cycle with an address between 10000H and 1FFFFH
(A16 = 1) enables the SRAM device. Also note that any bus cycle with an address starting at
30000H, 50000H, 70000H and so on also selects the SRAM device.
Decoding more address bits solves the problem of a chip-select being active over multiple address
ranges. In Figure 6-1(B), a one-of-eight decoder is connected to the uppermost address bits. Each
decoded output is active for one-eighth of the 1 Mbyte address space. However, each chip-select
has a fixed starting address and range. Future system memory changes could require circuit
changes to accommodate the additional memory.
6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS
The Chip-Select Unit overcomes limitations of the designs shown in Figure 6-1 and has the fol-
lowing features:
•
Ten chip-select outputs
•
Programmable start and stop addresses
•
Memory or I/O bus cycle decoder
•
Programmable wait-state generator
•
Provision to disable a chip-select
•
Provision to override bus ready
Figure 6-2 illustrates the logic blocks that generate a chip-select. Each chip-select has a duplicate
set of logic.
Summary of Contents for 80C186EA
Page 1: ...80C186EA 80C188EA Microprocessor User s Manual...
Page 2: ...80C186EA 80C188EA Microprocessor User s Manual 1995...
Page 19: ......
Page 20: ...1 Introduction...
Page 21: ......
Page 28: ...2 Overview of the 80C186 Family Architecture...
Page 29: ......
Page 79: ......
Page 80: ...3 Bus Interface Unit...
Page 81: ......
Page 129: ......
Page 130: ...4 Peripheral Control Block...
Page 131: ......
Page 139: ......
Page 140: ...5 ClockGenerationand Power Management...
Page 141: ......
Page 165: ......
Page 166: ...6 Chip Select Unit...
Page 167: ......
Page 190: ...7 Refresh Control Unit...
Page 191: ......
Page 205: ......
Page 206: ...8 Interrupt Control Unit...
Page 207: ......
Page 239: ...INTERRUPT CONTROL UNIT 8 32...
Page 240: ...9 Timer Counter Unit...
Page 241: ......
Page 265: ......
Page 266: ...10 Direct Memory Access Unit...
Page 267: ......
Page 295: ...DIRECT MEMORY ACCESS UNIT 10 28...
Page 296: ...11 Math Coprocessing...
Page 297: ......
Page 314: ...12 ONCE Mode...
Page 315: ......
Page 318: ...A 80C186 Instruction Set Additions and Extensions...
Page 319: ......
Page 330: ...B Input Synchronization...
Page 331: ......
Page 334: ...C Instruction Set Descriptions...
Page 335: ......
Page 383: ...INSTRUCTION SET DESCRIPTIONS C 48...
Page 384: ...D Instruction Set Opcodes and Clock Cycles...
Page 385: ......
Page 408: ...Index...
Page 409: ......