![Agilent Technologies J-BERT N4903 Скачать руководство пользователя страница 170](http://html1.mh-extra.com/html/agilent-technologies/j-bert-n4903/j-bert-n4903_user-manual_2868694170.webp)
The distribution of random values is called normal, if it can be described
by the following formula:
This formula describes a bell-shaped Gauss curve. If
μ
is zero and
σ
varied, you would get the curves illustrated in the figure below:
The height and position of a normal distribution can be specified in
terms of two parameters:
μ
and
σ
. The parameter
μ
is the mean, the
parameter
σ
is the standard deviation.
The Gaussian marker shows such a curve. Position, height, and width
of this curve can be changed by dragging the handles, and the actual
parameter values are displayed.
The marker has three handles that can be dragged: two for adjusting its
width, one for changing its height and position.
The following figure shows an exemplary DUT Output Timing/Jitter
measurement result with a Gaussian marker.
5
Advanced Analysis
170
Agilent J-BERT N4903 High-Performance Serial BERT
Содержание J-BERT N4903
Страница 1: ...S Agilent J BERT N4903 High Performance Serial BERT User Guide s Agilent Technologies...
Страница 68: ...2 Setting up Patterns 68 Agilent J BERT N4903 High Performance Serial BERT...
Страница 158: ...4 Setting up the Error Detector 158 Agilent J BERT N4903 High Performance Serial BERT...
Страница 314: ...6 Evaluating Results 314 Agilent J BERT N4903 High Performance Serial BERT...
Страница 374: ...7 Jitter Tolerance Tests 374 Agilent J BERT N4903 High Performance Serial BERT...
Страница 394: ...8 Solving Problems 394 Agilent J BERT N4903 High Performance Serial BERT...
Страница 434: ...Index 434 Agilent J BERT N4903 High Performance Serial BERT...