GE Multilin
G60 Generator Protection System
5-319
5 SETTINGS
5.9 TRANSDUCER INPUTS AND OUTPUTS
5
The base unit for power (refer to the FlexElements section in this chapter for additional details) is:
(EQ 5.57)
The minimum and maximum power values to be monitored (in pu) are:
(EQ 5.58)
The following settings should be entered:
DCMA OUTPUT H1 SOURCE
: “SRC 1 P”
DCMA OUTPUT H1 RANGE
: “–1 to 1 mA”
DCMA OUTPUT H1 MIN VAL
: “–1.247 pu”
DCMA OUTPUT H1 MAX VAL
: “1.247 pu”
With the above settings, the output will represent the power with the scale of 1 mA per 20.65 MW. The worst-case error for
this application can be calculated by superimposing the following two sources of error:
•
±0.5% of the full scale for the analog output module, or
•
±1% of reading error for the active power at power factor of 0.9
For example at the reading of 20 MW, the worst-case error is 0.01
×
20 MW + 0.207 MW = 0.407 MW.
EXAMPLE: CURRENT MONITORING
The phase A current (true RMS value) is to be monitored via the H2 current output working with the range from 4 to 20 mA.
The CT ratio is 5000:5 and the maximum load current is 4200 A. The current should be monitored from 0 A upwards, allow-
ing for 50% overload.
The phase current with the 50% overload margin is:
(EQ 5.59)
The base unit for current (refer to the
FlexElements
section in this chapter for additional details) is:
(EQ 5.60)
The minimum and maximum power values to be monitored (in pu) are:
(EQ 5.61)
The following settings should be entered:
DCMA OUTPUT H2 SOURCE
: “SRC 1 Ia RMS”
DCMA OUTPUT H2 RANGE
: “4 to 20 mA”
DCMA OUTPUT H2 MIN VAL
: “0.000 pu”
DCMA OUTPUT H2 MAX VAL
: “1.260 pu”
The worst-case error for this application could be calculated by superimposing the following two sources of error:
•
±0.5% of the full scale for the analog output module, or
•
±0.25% of reading or ±0.1% of rated (whichever is greater) for currents between 0.1 and 2.0 of nominal
For example, at the reading of 4.2 kA, the worst-case error is max(0.0025
×
4.2 kA, 0.001
×
5 kA) + 0.504 kA = 0.515 kA.
EXAMPLE: VOLTAGE MONITORING
A positive-sequence voltage on a 400 kV system measured via source 2 is to be monitored by the dcmA H3 output with a
range of 0 to 1 mA. The VT secondary setting is 66.4 V, the VT ratio setting is 6024, and the VT connection setting is
“Delta”. The voltage should be monitored in the range from 70% to 110% of nominal.
The minimum and maximum positive-sequence voltages to be monitored are:
(EQ 5.62)
The base unit for voltage (refer to the
FlexElements
section in this chapter for additional details) is:
P
BASE
115 V 120
×
1.2 kA
×
16.56 MW
=
=
minimum power
20.65 MW
–
16.56 MW
------------------------------
1.247 pu, maximum power
20.65 MW
16.56 MW
---------------------------
1.247 pu
=
=
–
=
=
0.005
±
1
1
–
( )
–
(
)
20.65 MW
×
×
0.207 MW
±
=
I
max
1.5 4.2 kA
×
6.3 kA
=
=
I
BASE
5 kA
=
minimum current
0 kA
5 kA
------------
0 pu, maximum current
6.3 kA
5 kA
-----------------
1.26 pu
=
=
=
=
0.005
20 4
–
(
)
6.3 kA
×
×
±
0.504 kA
±
=
V
min
0.7
400 kV
3
-------------------
×
161.66 kV,
V
max
1.1
400 kV
3
-------------------
×
254.03 kV
=
=
=
=
Summary of Contents for Multilin g60
Page 10: ...x G60 Generator Protection System GE Multilin TABLE OF CONTENTS INDEX ...
Page 32: ...1 22 G60 Generator Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 160: ...4 30 G60 Generator Protection System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Page 486: ...5 326 G60 Generator Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 518: ...6 32 G60 Generator Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Page 532: ...7 14 G60 Generator Protection System GE Multilin 7 2 TARGETS 7 COMMANDS AND TARGETS 7 ...
Page 748: ...D 10 G60 Generator Protection System GE Multilin D 1 IEC 60870 5 104 APPENDIX D D ...
Page 760: ...E 12 G60 Generator Protection System GE Multilin E 2 DNP POINT LISTS APPENDIX E E ...