![Dell S6000-ON Скачать руководство пользователя страница 442](http://html.mh-extra.com/html/dell/s6000-on/s6000-on_configuration-manual_84557442.webp)
However, if the Destination Address is a Hop-by-Hop options header, the Extension header is examined
by every forwarding router along the packet’s route. The Hop-by-Hop options header must immediately
follow the IPv6 header, and is noted by the value 0 (zero) in the Next Header field.
Extension headers are processed in the order in which they appear in the packet header.
Hop-by-Hop Options Header
The Hop-by-Hop options header contains information that is examined by every router along the
packet’s path. It follows the IPv6 header and is designated by the Next Header value 0 (zero).
When a Hop-by-Hop Options header is not included, the router knows that it does not have to process
any router specific information and immediately processes the packet to its final destination.
When a Hop-by-Hop Options header is present, the router only needs this extension header and does
not need to take the time to view further into the packet.
The Hop-by-Hop Options header contains:
• Next Header (1 byte)
This field identifies the type of header following the Hop-by-Hop Options header and uses the same
values.
• Header Extension Length (1 byte)
This field identifies the length of the Hop-by-Hop Options header in 8-byte units, but does not include
the first 8 bytes. Consequently, if the header is less than 8 bytes, the value is 0 (zero).
• Options (size varies)
This field can contain one or more options. The first byte if the field identifies the Option type, and directs
the router how to handle the option.
00
Skip and continue processing.
01
Discard the packet.
10
Discard the packet and send an ICMP Parameter Problem Code 2 message to the
packet’s Source IP Address identifying the unknown option type.
11
Discard the packet and send an ICMP Parameter Problem, Code 2 message to the
packet’s Source IP Address only if the Destination IP Address is not a multicast
address.
The second byte contains the Option Data Length.
The third byte specifies whether the information can change en route to the destination. The value is 1 if
it can change; the value is 0 if it cannot change.
Addressing
IPv6 addresses are normally written as eight groups of four hexadecimal digits, where each group is
separated by a colon (:).
For example, 2001:0db8:0000:0000:0000:0000:1428:57ab is a valid IPv6 address. If one or more four-
digit group(s) is 0000, the zeros may be omitted and replaced with two colons(::). For example,
2001:0db8:0000:0000:0000:0000:1428:57ab can be shortened to 2001:0db8::1428:57ab. Only one set
of double colons is supported in a single address. Any number of consecutive 0000 groups may be
442
IPv6 Routing
Содержание S6000-ON
Страница 1: ...Dell Configuration Guide for the S6000 ON System 9 9 0 0 ...
Страница 505: ...Figure 60 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 505 ...
Страница 508: ...Figure 62 Inspecting a LAG Port on BRAVO Using the show interface Command 508 Link Aggregation Control Protocol LACP ...
Страница 509: ...Figure 63 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 509 ...
Страница 552: ...mac address table static multicast mac address vlan vlan id output range interface 552 Microsoft Network Load Balancing ...
Страница 557: ...Figure 80 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 557 ...
Страница 558: ...Figure 81 Configuring PIM in Multiple Routing Domains 558 Multicast Source Discovery Protocol MSDP ...
Страница 562: ...Figure 83 MSDP Default Peer Scenario 1 562 Multicast Source Discovery Protocol MSDP ...
Страница 563: ...Figure 84 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 563 ...
Страница 564: ...Figure 85 MSDP Default Peer Scenario 3 564 Multicast Source Discovery Protocol MSDP ...
Страница 665: ...Policy based Routing PBR 665 ...
Страница 672: ...ip pim bsr border Remove candidate RP advertisements clear ip pim rp mapping 672 PIM Sparse Mode PIM SM ...
Страница 818: ...Figure 110 Single and Double Tag TPID Match 818 Service Provider Bridging ...
Страница 819: ...Figure 111 Single and Double Tag First byte TPID Match Service Provider Bridging 819 ...
Страница 995: ...Figure 140 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 995 ...