![Dell S6000-ON Скачать руководство пользователя страница 161](http://html.mh-extra.com/html/dell/s6000-on/s6000-on_configuration-manual_84557161.webp)
Route reflection divides iBGP peers into two groups: client peers and nonclient peers. A route reflector
and its client peers form a route reflection cluster. Because BGP speakers announce only the best route
for a given prefix, route reflector rules are applied after the router makes its best path decision.
• If a route was received from a nonclient peer, reflect the route to all client peers.
• If the route was received from a client peer, reflect the route to all nonclient and all client peers.
To illustrate how these rules affect routing, refer to the following illustration and the following steps.
Routers B, C, D, E, and G are members of the same AS (AS100). These routers are also in the same Route
Reflection Cluster, where Router D is the Route Reflector. Router E and H are client peers of Router D;
Routers B and C and nonclient peers of Router D.
Figure 20. BGP Router Rules
1.
Router B receives an advertisement from Router A through eBGP. Because the route is learned
through eBGP, Router B advertises it to all its iBGP peers: Routers C and D.
2.
Router C receives the advertisement but does not advertise it to any peer because its only other peer
is Router D, an iBGP peer, and Router D has already learned it through iBGP from Router B.
3.
Router D does not advertise the route to Router C because Router C is a nonclient peer and the
route advertisement came from Router B who is also a nonclient peer.
4.
Router D does reflect the advertisement to Routers E and G because they are client peers of Router
D.
5.
Routers E and G then advertise this iBGP learned route to their eBGP peers Routers F and H.
BGP Attributes
Routes learned using BGP have associated properties that are used to determine the best route to a
destination when multiple paths exist to a particular destination.
These properties are referred to as BGP attributes, and an understanding of how BGP attributes influence
route selection is required for the design of robust networks. This section describes the attributes that
BGP uses in the route selection process:
•
Weight
•
Local Preference
•
Multi-Exit Discriminators (MEDs)
•
Origin
•
AS Path
Border Gateway Protocol IPv4 (BGPv4)
161
Содержание S6000-ON
Страница 1: ...Dell Configuration Guide for the S6000 ON System 9 9 0 0 ...
Страница 505: ...Figure 60 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 505 ...
Страница 508: ...Figure 62 Inspecting a LAG Port on BRAVO Using the show interface Command 508 Link Aggregation Control Protocol LACP ...
Страница 509: ...Figure 63 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 509 ...
Страница 552: ...mac address table static multicast mac address vlan vlan id output range interface 552 Microsoft Network Load Balancing ...
Страница 557: ...Figure 80 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 557 ...
Страница 558: ...Figure 81 Configuring PIM in Multiple Routing Domains 558 Multicast Source Discovery Protocol MSDP ...
Страница 562: ...Figure 83 MSDP Default Peer Scenario 1 562 Multicast Source Discovery Protocol MSDP ...
Страница 563: ...Figure 84 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 563 ...
Страница 564: ...Figure 85 MSDP Default Peer Scenario 3 564 Multicast Source Discovery Protocol MSDP ...
Страница 665: ...Policy based Routing PBR 665 ...
Страница 672: ...ip pim bsr border Remove candidate RP advertisements clear ip pim rp mapping 672 PIM Sparse Mode PIM SM ...
Страница 818: ...Figure 110 Single and Double Tag TPID Match 818 Service Provider Bridging ...
Страница 819: ...Figure 111 Single and Double Tag First byte TPID Match Service Provider Bridging 819 ...
Страница 995: ...Figure 140 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 995 ...