•
Prefix Renumbering
— Useful in transparent renumbering of hosts in the network when an
organization changes its service provider.
NOTE: As an alternative to stateless autoconfiguration, network hosts can obtain their IPv6
addresses using the dynamic host control protocol (DHCP) servers via stateful auto-configuration.
NOTE: Dell Networking OS provides the flexibility to add prefixes on Router Advertisements (RA) to
advertise responses to Router Solicitations (RS). By default, RA response messages are sent when an
RS message is received.
Dell Networking OS manipulation of IPv6 stateless autoconfiguration supports the router side only.
Neighbor discovery (ND) messages are advertised so the neighbor can use this information to auto-
configure its address. However, received ND messages are not used to create an IPv6 address.
NOTE: Inconsistencies in router advertisement values between routers are logged per RFC 4861.
The values checked for consistency include:
• Cur Hop limit
• M and O flags
• Reachable time
• Retrans timer
• MTU options
• Preferred and valid lifetime values for the same prefix
Only management ports support stateless auto-configuration as a host.
The router redirect functionality in the neighbor discovery protocol (NDP) is similar to IPv4 router redirect
messages. NDP uses ICMPv6 redirect messages (Type 137) to inform nodes that a better router exists on
the link.
IPv6 Headers
The IPv6 header has a fixed length of 40 bytes. This fixed length provides 16 bytes each for source and
destination information and 8 bytes for general header information.
The IPv6 header includes the following fields:
•
Version (4 bits)
•
Traffic Class (8 bits)
•
Flow Label (20 bits)
•
Payload Length (16 bits)
•
Next Header (8 bits)
•
Hop Limit (8 bits)
•
Source Address (128 bits)
•
Destination Address (128 bits)
IPv6 provides for extension headers. Extension headers are used only if necessary. There can be no
extension headers, one extension header or more than one extension header in an IPv6 packet. Extension
headers are defined in the Next Header field of the preceding IPv6 header.
438
IPv6 Routing
Содержание S6000-ON
Страница 1: ...Dell Configuration Guide for the S6000 ON System 9 9 0 0 ...
Страница 505: ...Figure 60 Inspecting Configuration of LAG 10 on ALPHA Link Aggregation Control Protocol LACP 505 ...
Страница 508: ...Figure 62 Inspecting a LAG Port on BRAVO Using the show interface Command 508 Link Aggregation Control Protocol LACP ...
Страница 509: ...Figure 63 Inspecting LAG 10 Using the show interfaces port channel Command Link Aggregation Control Protocol LACP 509 ...
Страница 552: ...mac address table static multicast mac address vlan vlan id output range interface 552 Microsoft Network Load Balancing ...
Страница 557: ...Figure 80 Configuring OSPF and BGP for MSDP Multicast Source Discovery Protocol MSDP 557 ...
Страница 558: ...Figure 81 Configuring PIM in Multiple Routing Domains 558 Multicast Source Discovery Protocol MSDP ...
Страница 562: ...Figure 83 MSDP Default Peer Scenario 1 562 Multicast Source Discovery Protocol MSDP ...
Страница 563: ...Figure 84 MSDP Default Peer Scenario 2 Multicast Source Discovery Protocol MSDP 563 ...
Страница 564: ...Figure 85 MSDP Default Peer Scenario 3 564 Multicast Source Discovery Protocol MSDP ...
Страница 665: ...Policy based Routing PBR 665 ...
Страница 672: ...ip pim bsr border Remove candidate RP advertisements clear ip pim rp mapping 672 PIM Sparse Mode PIM SM ...
Страница 818: ...Figure 110 Single and Double Tag TPID Match 818 Service Provider Bridging ...
Страница 819: ...Figure 111 Single and Double Tag First byte TPID Match Service Provider Bridging 819 ...
Страница 995: ...Figure 140 Setup OSPF and Static Routes Virtual Routing and Forwarding VRF 995 ...