Spillover Limits are set separately for ingoing and outgoing traffic with only one of these
typically being specified. If both are specified then only one of them needs to be exceeded
continuously for Hold Timer seconds for the next matching route to be chosen. The units of
the limits, such as Mbps, can be selected to simplify specification of the values.
Using Route Metrics with Round Robin
An individual route has a metric associated with it, with the default metric value being zero.
With the Round Robin and the associated Destination algorithms, the metric value can be set
differently on matching routes to create a bias towards the routes with lower metrics. Routes with
lower metrics will be chosen more frequently than those with higher metrics and the proportion of
usage will be based on the relative differences between the metrics of matching routes.
In a scenario with two ISPs, if the requirement is that the bulk of traffic passes through one of the
ISPs then this can be achieved by enabling RLB and setting a low metric on the route to the
favoured ISP. A relatively higher metric is then set on the route to the other ISP.
The all-nets metric must be higher that interface routes
The metric value used for the all-nets route should always be higher than the metric
specified for any other route. This is true regardless if RLB is being used or not. The
metric should the highest so that it is examined last.
Using Route Metrics with Spillover
When using the Spillover algorithm, a number of points should be noted regarding metrics and the
way alternative routes are chosen:
•
Route metrics should always be set.
With spillover, NetDefendOS always chooses the route in the matching routes list that has the
lowest metric. The algorithm is not intended to be used with routes having the same metric so
the administrator should set different metrics for all the routes to which spillover applies.
Metrics determine a clear ordering for which route should be chosen next after the interface
traffic limits for the chosen route have been exceeded.
•
There can be many alternative routes.
Several alternative routes can be set up, each with their own interface limits and each with a
4.4. Route Load Balancing
Chapter 4. Routing
143
Summary of Contents for 800 - DFL 800 - Security Appliance
Page 24: ...1 3 NetDefendOS State Engine Packet Flow Chapter 1 NetDefendOS Overview 24 ...
Page 69: ...2 6 4 Restore to Factory Defaults Chapter 2 Management and Maintenance 69 ...
Page 121: ...3 9 DNS Chapter 3 Fundamentals 121 ...
Page 181: ...4 7 5 Advanced Settings for Transparent Mode Chapter 4 Routing 181 ...
Page 192: ...5 5 IP Pools Chapter 5 DHCP Services 192 ...
Page 282: ...6 7 Blacklisting Hosts and Networks Chapter 6 Security Mechanisms 282 ...
Page 300: ...mechanism 7 3 7 SAT and FwdFast Rules Chapter 7 Address Translation 300 ...
Page 301: ...7 3 7 SAT and FwdFast Rules Chapter 7 Address Translation 301 ...
Page 318: ...8 3 Customizing HTML Pages Chapter 8 User Authentication 318 ...
Page 322: ...ALG 9 1 5 The TLS Alternative for VPN Chapter 9 VPN 322 ...
Page 377: ...Management Interface Failure with VPN Chapter 9 VPN 377 ...
Page 408: ...10 4 6 SLB_SAT Rules Chapter 10 Traffic Management 408 ...
Page 419: ...11 5 HA Advanced Settings Chapter 11 High Availability 419 ...
Page 426: ...12 3 5 Limitations Chapter 12 ZoneDefense 426 ...
Page 449: ...13 9 Miscellaneous Settings Chapter 13 Advanced Settings 449 ...