5-170
G60 Generator Protection System
GE Multilin
5.6 GROUPED ELEMENTS
5 SETTINGS
5
The positive-sequence restraint must be considered when testing for pick-up accuracy and response time (multiple of
pickup). The operating quantity depends on the way the test currents are injected into the relay:
•
Single-phase injection:
I
op
= 1/3
×
(3 –
K
) ×
I
injected
.
•
The directional unit uses the negative-sequence current and voltage for fault direction discrimination.
The following table defines the negative-sequence directional overcurrent element.
The negative-sequence voltage must be greater than 0.02 pu to be validated for use as a polarizing signal. If the polarizing
signal is not validated neither forward nor reverse indication is given. The following figure explains the usage of the voltage
polarized directional unit of the element.
The figure below shows the phase angle comparator characteristics for a phase A to ground fault, with settings of:
ECA
= 75° (element characteristic angle = centerline of operating characteristic)
FWD LA
= 80° (forward limit angle = ± the angular limit with the ECA for operation)
REV LA
= 80° (reverse limit angle = ± the angular limit with the ECA for operation)
The element incorporates a current reversal logic: if the reverse direction is indicated for at least 1.25 of a power system
cycle, the prospective forward indication will be delayed by 1.5 of a power system cycle. The element is designed to emu-
late an electromechanical directional device. Larger operating and polarizing signals will result in faster directional discrimi-
nation bringing more security to the element operation.
Figure 5–89: NEGATIVE-SEQUENCE DIRECTIONAL CHARACTERISTIC
The forward-looking function is designed to be more secure as compared to the reverse-looking function, and therefore
should be used for the tripping direction. The reverse-looking function is designed to be faster as compared to the forward-
looking function and should be used for the blocking direction. This allows for better protection coordination. The above
bias should be taken into account when using the negative-sequence directional overcurrent element to directionalize other
protection elements. The negative-sequence directional pickup must be greater than the
PRODUCT SETUP
ÖØ
DISPLAY
PROPERTIES
ÖØ
CURRENT CUT-OFF LEVEL
setting value.
OVERCURRENT UNIT
DIRECTIONAL UNIT
MODE
OPERATING CURRENT
DIRECTION
COMPARED PHASORS
Negative-sequence
I
op
= |I_2| – K
×
I_1|
Forward
–V_2
+
Z_offset
×
I_2
I_2
×
1
∠
ECA
Reverse
–V_2
+
Z_offset
×
I_2
–(I_2
×
1
∠
ECA)
Zero-sequence
I
op
= 3 × |I_0| – K
×
|I_1|
Forward
–V_2
+
Z_offset
×
I_2
I_2
×
1
∠
ECA
Reverse
–V_2
+
Z_offset
×
I_2
–(I_2
×
1
∠
ECA)
827806A2.CDR
VAG (reference)
VCG
VBG
–I_2 line
I_2 line
ECA line
–ECA line
LA
LA
LA
LA
ECA
FWD Operating
Region
REV Operating
Region
FWD
LA
FWD
LA
REV
LA
REV
LA
V_2 line
–V_2 line
Summary of Contents for G60 UR Series
Page 2: ......
Page 4: ......
Page 12: ...xii G60 Generator Protection System GE Multilin TABLE OF CONTENTS ...
Page 32: ...1 20 G60 Generator Protection System GE Multilin 1 5 USING THE RELAY 1 GETTING STARTED 1 ...
Page 132: ...4 30 G60 Generator Protection System GE Multilin 4 3 FACEPLATE INTERFACE 4 HUMAN INTERFACES 4 ...
Page 392: ...5 260 G60 Generator Protection System GE Multilin 5 10 TESTING 5 SETTINGS 5 ...
Page 418: ...6 26 G60 Generator Protection System GE Multilin 6 5 PRODUCT INFORMATION 6 ACTUAL VALUES 6 ...
Page 482: ...A 12 G60 Generator Protection System GE Multilin A 1 PARAMETER LISTS APPENDIXA A ...
Page 604: ...D 10 G60 Generator Protection System GE Multilin D 1 IEC 60870 5 104 APPENDIXD D ...
Page 616: ...E 12 G60 Generator Protection System GE Multilin E 2 DNP POINT LISTS APPENDIXE E ...
Page 634: ...x G60 Generator Protection System GE Multilin INDEX ...