![Casio ClassPad II fx-CP400+E User Manual Download Page 89](http://html.mh-extra.com/html/casio/classpad-ii-fx-cp400-e/classpad-ii-fx-cp400-e_user-manual_2567997089.webp)
Chapter 2: Main Application
89
u
poissonCDf
[Action][Distribution/Inv.Dist][Discrete][poissonCDf]
Function: Returns the cumulative probability in a Poisson distribution that the success will occur between
specified lower value and upper value.
Syntax: poissonCDf(lower value, upper value,
[ ) ]
Calculation Result Output:
prob
Example: To determine the Poisson cumulative probability when lower
value = 2, upper value = 3,
= 2.26
u
invPoissonCDf
[Action][Distribution/Inv.Dist][Inverse][invPoissonCDf]
Function: Returns the minimum number of trials of a Poisson cumulative probability distribution for specified
values.
Syntax: invPoissonCDf(
prob
,
[ ) ]
Calculation Result Output:
x
Inv,
½
x
Inv
Important!
See “Important!” under “invBinomialCDf” on page 88.
Example: To determine the minimum number of trials when
prob
= 0.8074,
= 2.26
u
geoPDf
[Action][Distribution/Inv.Dist][Discrete][geoPDf]
Function: Returns the probability in a geometric distribution that the success will occur on a specified trial.
Syntax: geoPDf(
x
,
pos
[ ) ]
Calculation Result Output:
prob
Example: To determine the geometric probability when
x
= 6,
pos
= 0.4
u
geoCDf
[Action][Distribution/Inv.Dist][Discrete][geoCDf]
Function: Returns the cumulative probability in a geometric distribution that the success will occur between
specified lower value and upper value.
Syntax: geoCDf(lower value, upper value,
pos
[ ) ]
Calculation Result Output:
prob
Example: To determine the geometric probability when lower value = 2,
upper value = 3,
pos
= 0.5
u
invGeoCDf
[Action][Distribution/Inv.Dist][Inverse][invGeoCDf]
Function: Returns the minimum number of trials of a geometric cumulative probability distribution for specified
values.
Syntax: invGeoCDf(
prob
,
pos
[ ) ]
Calculation Result Output:
x
Inv,
½
x
Inv
Important!
See “Important!” under “invBinomialCDf” on page 88.
Example: To determine the minimum number of trials when
prob
= 0.875,
pos
= 0.5