Rev. 1.0, 09/02, page 317 of 568
14.4.2
Receive Data Sampling Timing and Reception Margin in Asynchronous Mode
In asynchronous mode, the SCI operates on a basic clock with a frequency of 16 times the transfer
rate. In reception, the SCI samples the falling edge of the start bit using the basic clock, and
performs internal synchronization. Receive data is latched internally at the rising edge of the 8th
pulse of the basic clock as shown in figure 14.3. Thus, the reception margin in asynchronous mode
is given by formula (1) below.
M = { (0.5 –
) –
– (L – 0.5) F} 100 [%]
1
2N
D – 0.5
N
... Formula (1)
Where N : Ratio of bit rate to clock (N = 16)
D : Clock duty cycle (D = 0.5 to 1.0)
L : Frame length (L = 9 to 12)
F : Absolute value of clock rate deviation
Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty cycle) = 0.5
in formula (1), the reception margin can be given by the formula.
M = {0.5 – 1/(2
×
16)}
×
100 [%] = 46.875%
However, this is only the computed value, and a margin of 20% to 30% should be allowed for in
system design.
Internal basic
clock
16 clocks
8 clocks
Receive data
(RxD)
Synchronization
sampling timing
Start bit
D0
D1
Data sampling
timing
15 0
7
15 0
0
7
Figure 14.3 Receive Data Sampling Timing in Asynchronous Mode
Summary of Contents for H8S/2627
Page 22: ...Rev 1 0 09 02 page xx of xxxvi Index 565 ...
Page 30: ...Rev 1 0 09 02 page xxviii of xxxiv ...
Page 36: ...Rev 1 0 09 02 page xxxiv of xxxiv Table 23 9 Flash Memory Characteristics 561 ...
Page 82: ...Rev 1 0 09 02 page 46 of 568 ...
Page 88: ...Rev 1 0 09 02 page 52 of 568 ...
Page 98: ...Rev 1 0 09 02 page 62 of 568 ...
Page 156: ...Rev 1 0 09 02 page 120 of 568 ...
Page 390: ...Rev 1 0 09 02 page 354 of 568 ...
Page 480: ...Rev 1 0 09 02 page 444 of 568 ...
Page 512: ...Rev 1 0 09 02 page 476 of 568 ...
Page 528: ...Rev 1 0 09 02 page 492 of 568 ...
Page 580: ...Rev 1 0 09 02 page 544 of 568 ...