background image

9

02.98

1-148

 Siemens AG 1998 All Rights reserved    6SN1197–0AA00 02.98 Edition

SIMODRIVE 611  (PJ)

Comment

The line contactor in the NE module is used when the drives of the machine and
system are isolated from the supply when a fault condition occurs. In this case,
the power DC link is isolated from the supply. Inthis case, the electronics power
supply in the NE module always remains connected to the line supply. All exter-
nally wired bypass connections from the supply to the power DC link must also
be electrically isolated (p. 1-145 "Sequence and procedure...").

In the setting–up mode, when using an isolating transformer, the isolating trans-
former secondary may not be grounded. The grounding bar on the NE module
is used to ground the DC link M rail through 100 k

.

When using an auto–transformer in the setting–up mode, the user must monitor
the DC link voltage, and if a fault occurs, which results in an increase in the DC
link voltage, all drives of the machine and system must be isolated from the sup-
ply.

In the setting–up mode, when a hanging axis drops, it is possible, that the motor
can feed power into the DC link, even with the pulses inhibited, and thus in-
crease the DC link voltage.

When changing over from standard– to setting–operation, the DC link first re-
mains at 600 V. The voltage difference between 600 V and the rectified voltage
in setting–up operation represents a residual level of energy, which must be
considered on a case for case basis. A fault analysis must always be executed
before using the start inhibit function.

9.5.8  Comment

Summary of Contents for SIMODRIVE 611A

Page 1: ...SIEMENS SIMODRIVE 611A Transistor PWM Inverters and Motors for AC Feed Drives Installation and Planning Guide Edition 04 99 Manufacturers Service Documentation 6SN1197 IRWFD 0BP2 BP1952 ...

Page 2: ......

Page 3: ...ol with standard interface 1 80 Start up Short Start up settings 1 83 Adaptation Tables 1 85 Speed controller optimization 1 96 Tachometer adjustments 1 97 Setting of proportional gain Kp without adaptation 1 97 Setting the integral action time Tn without adaptation 1 98 Integral action time with adaptation if required 1 99 Proportional gain with adaptation 1 100 Speed controller I component limit...

Page 4: ...dures Power and Grounding 1 165 Infeed Module connection and start up notes 1 168 Standard Version Feed Module connection and Start up notes 1 172 2 Axis Standard Version Feed Module connection and Start up notes 1 175 User Friendly Version Feed Module connection and Start up notes 1 178 Main Spindle Option Board Connections and Notes 1 181 Monitoring and Pulsed Resistor Module Connections and Not...

Page 5: ... Servo Motors Motor Description 1FT5 1 1 Characteristics and technical data 1FT5 1 1 Functions and options 1FT5 1 6 Interfaces 1FT5 1 18 Thermal motor protection 1FT5 1 19 Encoder 1FT5 1 19 Order designations 1FT5 2 1 Technical Data and Characteristics 1FT5 3 1 Speed Torque diagrams 1FT5 3 1 Standard motors 1FT5 3 1 Short motors 1FT5 3 30 Cantilever axial force diagrams 1FT5 3 36 Standard motors 1...

Page 6: ......

Page 7: ...SECTION 0 PRELIMINARY INFORMATION 0 7 ...

Page 8: ......

Page 9: ...quipment nor to provide for every possible contingency to be met in connection with installa tion operation or maintenance Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser s purposes the matter should be referred to the local Siemens sales office The contents of this Guide shall neither become part of nor modify any prio...

Page 10: ...th established safety procedures trained in rendering first aid Danger This symbol in the document indicates that death severe personal injury or substantial property damage will result if proper precautions are not taken Warning This symbol appears in the document if death severe personal injury or pro perty damage can result if proper precautions are not taken Caution This symbol appears in the ...

Page 11: ...s which are at ha zardous voltage levels Incorrect handling of these units i e not observing the warning information can therefore result in severe bodily injury or material damage Only appropriately qualified personnel may commission start up this equip ment This personnel must have in depth knowledge regarding all of the warning information and service instructions according to this Guide Perfec...

Page 12: ...ions must always be observed to eliminate hazardous situations and damage for special versions of the machines and equipment the information in the associated catalogs and quotation is valid further all of the relevant national local and plant system specific regula tions and specifications must be taken into account all work must be undertaken with the system in a no voltage condition po wered do...

Page 13: ...ed movement could occur for pulling loads No longer occurs from 6SN1118 0DV2V 0AA0 Version C Note If a system high voltage test is made the overvoltage limiting module must be removed in order to prevent the voltage limiting responding When configuring the system the connection between the voltage limiting cir cuit and the central grounding point should be as short as possible and be low ohmic Not...

Page 14: ... not be damaged they must not be strained and they must not come into contact with rotating components Note It is not permissible to connect SIMODRIVE equipment to a supply system with ELCBs this restriction is permitted acc to DIN VDE 0160 05 88 Section 6 5 When operational protection against direct contact is provided in a form to al low the unit to be used in enclosed electrical equipment rooms...

Page 15: ...taken with the system in a no voltage condition S For the feed motors when the rotor is rotating a voltage is present at the motor terminals as a result of the integrated permanent magnets S The motor must be connected according to the circuit diagram supplied S It is not permissible to directly connect the motor to the three phase supply and this would destroy the motor S Surface temperatures of ...

Page 16: ...ched if you are continuously grounded through an ESDS bracelet you are wearing ESDS shoes or ESDS shoe grounding strips in con junction with an ESDS floor surface Boards may only be placed on conductive surfaces desk with ESDS sur face conductive ESDS foam rubber ESDS packing bag ESDS transport containers Boards may not be brought close to data terminals monitors or television sets a minimum of 10...

Page 17: ...Section 1 611A Analog Feed Drives 1 17 ...

Page 18: ...1 18 ...

Page 19: ...odule when braking the drive kinetic energy fed back into the DC link is converted into heat in the brake resistors which are either integrated or mounted This heat is then dissipated to the environment When required addi tional single or several pulsed resistor modules can be used within the configu ring limits pulsed resistor modules a pulsed resistor is not integrated in all of the modules The ...

Page 20: ...6SN114 1 0 0 1 the basic setting is for sinusoidal current operation Important Terminal 63 pulse enable and or terminal 48 starting terminal contactor con trol must be de energized or disconnected before the drive is powered up or down using the main circuit breaker or line contactor OFF I R module Vsupply 400V 10 VDC link 600V UE module Vsupply 400V 10 VDC link Vsupply 1 35 Monitoring thresholds ...

Page 21: ...ve run up MCU must have run up OFF Standard setting regenerative feedback active I R modules are capable of regenerative feedback UE module The pulsed resistor in the module is effective ON Regenerative feedback disabled I R modules Regenerative feedback is inhibited UE module The pulsed resistor in the module is not effective Comment This function is only effective for 10kW from Order No 6SN1146 ...

Page 22: ...0AA00 1EAV 6SN1111 0AA00 1FAV Line filter for sinusoidal current 1 16 kW Line filter for sinusoidal current 1 36 kW Line filter for sinusoidal filter1 55 kW Line filter for sinusoidal current1 80 kW Line filter for sinusoidal current1 120 kW 6SN1111 0AA01 2BAV 6SN1111 0AA01 2CAV 6SN1111 0AA01 2DAV 6SN1111 0AA01 2EAV 6SN1111 0AA01 2FAV Important For all of the combinations which are not listed here...

Page 23: ...ible causes Regenerative feedback off setting up operation line supply fault for UE pulsed resistor not operational line supply voltage too high dynamic overload condition Effects 1 red LED bright Pulses for the complete drive group are canceled 2 red LED bright Pulses for the complete drive group are canceled 4 yellow LED dark xxxx 5 red LED bright 1 Only the I R module pulses are canceled regene...

Page 24: ...1 24 ...

Page 25: ...13 5 External 2 Emax 180 kWs I R module 16 21 kW 16 21 35 16 21 35 27 35 5 59 16 10 100 I R module 16 21 kW 320 320 16 21 35 26 5 35 58 16 10 10 5 I R module 36 47 kW 36 47 70 36 47 70 60 5 79 117 5 50 200 I R module 36 47 kW 585 585 36 47 70 60 78 116 50 15 5 I R module 55 71 kW 55 71 91 55 71 91 92 5 119 153 95 or 300 I R module 55 71 kW 745 745 55 71 91 91 118 151 2 x 35 26 I R module 55 71 kW ...

Page 26: ...rnal 1 Emax 7 5 kWs UE module 28 50 kW 160 90 450 V DC 52 67 93 540 V DC 50 13 5 External 2 Emax 180 kWs I R module 36 47 kW 36 47 70 36 47 70 60 5 79 117 5 50 200 I R module 36 47 kW 535 50 36 47 70 60 78 116 50 15 5 I R module 55 71 kW 55 71 91 55 71 91 92 5 119 153 95 or 300 I R module 55 71 kW 630 115 55 71 91 91 118 151 2 x 35 26 I R module 80 104 kW 80 104 131 80 104 131 134 174 220 95 or 30...

Page 27: ... AC 3 ph 408 432V AC 1 55 65Hz Coil connection L1 L2 3 ph 360 457V AC 45 53Hz 3 ph 400 510V AC 57 65Hz All I R modules and the UE 28 kW are force ventilated The UE modules 5kW 10kW the monitoring module as well as the pulsed resi stor module are self ventilated Before powering up for the first time the cabinet wiring motor encoder feeder cables and the DC link connections must be checked to ensure...

Page 28: ... pre loading condition Peak output duty cycle with pre loading condition S6 duty cycle with pre loading condition Figure 3 2 The following rule of thumb is valid 1 T T 0 P t Pn 2 dt 1 03 Pn P t Pmax tŮ 0 T For load duty cycles with a period T 10 s 1 T T 0 P t Pn 2 dt 0 90 For load duty cycles with a period 10 s T 1 min 1 T T 0 P t Pn 2 dt 0 89 For load duty cycles with a period 1 min T 10 min P t ...

Page 29: ...y Table 3 5 UE modules with pulsed resistors Pulsed resistors technical data External pulsed resistor 0 3 25 kW External pulsed resistor 1 5 25 kW Internal pulsed resistor 0 3 25 kW Internal pulsed resistor 0 2 10 kW Order No pulsed re sistor 6SN1113 1AA00 0DA0 6SN1113 1AA00 0CA0 Integrated in UE 10 kW pulsed resistor module UE 5 kW Can be used for UE module 28 kW UE module 28 kW Can be used for P...

Page 30: ...d duty cycle for internal and external pulsed resistors Table 3 6 Examples Pulsed resistor 0 2 10 kW Pulsed resistor 0 3 25 kW Pulsed resistor 1 5 25 kW Emax Pn Pmax 13500 Ws 1 200 W 10000 W 7500 Ws 300 W 25000W 180000Ws 1500 W 25000W Example A T 0 2 s 10 s 0 12 s 10 s 0 6 s 10 s A T 1 35 s 67 5 s 0 3 s 25 s 7 2 s 120 s All of the following conditions must be fulfilled 1 Pmax M 2 π n 60 2 Emax E E...

Page 31: ... PE 1R 3R Figure 3 5 Connection for an external pulsed resistor 0 3 25kW Connection for an external pulsed resistor 1 5 25 kW Order No 6SN1113 1AA00 0CA00 Screen connection is realized through the PG gland Screened connecting cable braided screen cross section 2 5 4 mm2 max length 10 m PE 1R 3R Figure 3 6 Connection for an external pulsed resistor 1 5 25kW Note Conductors which are not used in mul...

Page 32: ...he following connection combinations are possible Connection of an external 1 5 kW resistor Connector without jumper internal resistor is active external resistor is active 1 Screen connection as close as possible to the module Order No 6SN1113 1AB0V 0VA0V P600 M600 Pul sed resis tor mo dule 1R 1 PE 1R 3R 3R 2R PE rail Figure 3 8 Connection of an external 1 5kW pulsed resistor module No of pulsed ...

Page 33: ...s of connecting an external pulsed resistor to UE 28 kW Pulsed resistor PR Terminal block TR1 Terminal block TR2 0 3 25 kW 1R 2R 3R PR 0 3 kW 1R 2R 3R 2 x 0 3 25 kW 0 6 50 kW 1R 2R 3R PR 0 3 kW 1R 2R 3R PR 1 5 25 kW 1R 2R 3R PR 1 5 kW 25 1R 2R 3R 2 x 1 5 25 kW 3 50 kW 1R 2R 3R PR 1 5 kW 1R 2R 3R PR 1 5 kW Jumper to code the thermal limiting characteristic 28 kW UE module Possibilities of connectin...

Page 34: ...60 to 457 VAC 47 5 to 62 5 Hz 1 0 A 20 Ccw direction of rot when viewing the ro tor IP 54 8 Warning For a radial fan the ground connection is established as it is directly mounted on the module housing If this is not the case a separate ground connection is required Note Observe the phase sequence when connecting up the fan I R L1 L2 L3 PE Q To additional fans Motor protection circuit breaker Q do...

Page 35: ...V 300 V 16mm2 10mm2 4 16mm2 10mm2 4 Monitoring module 1R 2R 3R TR1 TR29 External resistance connection I O V300 6mm2 4mm2 4 Pulsed resistor UE 28 kW X131 Electronics M I O 0 V 16mm2 10mm2 4 I R UE monito ring module 1 I input O output NC NC contact NO NO contact for signal NO high NC low 2 Terminal 19 is the reference ground connected inside the module with 10 kW to the general reference ground X1...

Page 36: ...k temperature monitoring responds at the feed drive 611A user friendly motor temperature monitoring responds heatsink temperature monitoring responds I2t temperature monitoring responds non latching at 611A Standard Motor temperature monitoring responds heatsink temperature monitoring responds S X171 Terminal NS1 NS2 coil circuit of the internal line supply and pre charging contac tor is used to e...

Page 37: ...NO contact terminals 111 213 NC contact for I R 16kW and UE 10kW only from Order No 6SN114V 1VV01 0VVV S terminal 19 FR reference ground enable voltage floating connected to the general reference ground terminal 15 via 10kΩ it is not permissible to connect terminal 19 with terminal 15 connect to PE rail or X131 S terminal 9 FR 24V enable voltage max loadcapabilityofthepowersupply 500mA corresponds...

Page 38: ...pply will be destroyed terminal 63 must be switched via the ready relay of the I R in order to prevent the module to the right of the monitoring module starting during pre charging If a line supply fault is displayed or if the yellow LED is dark the overvoltage limiting module must be checked Procedure 1 Power down the drive converter into a no voltage condition 2 Remove the overvoltage limiting m...

Page 39: ...1 39 ...

Page 40: ... 5 mm2 I R UE monito ring module 74 nc 73 2 73 1 nc 72 X111 X111 X111 X111 X111 X111 Relay contact Ready signal NC I I NO 1 ph 250V AC 50V DC 2A max 5V DC 3mA min 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 I R UE monito ring module 92 8 1122 X161 X161 Enable voltage Setting up mode Standard mode O I 24 V 21 V 30 V RE 1 5 kΩ 1 5 mm2 1 5 mm2 I R UE monito ring module 1 I input O output ...

Page 41: ... NO high NC low 2 Terminal 19 is the reference ground connected inside the module with 10 kW to the general reference ground X131 terminal 15 It is not permissible that terminal 15 is connected to PE or terminal 19 further no external voltage sources may be connected to terminal 15 Terminal 19 may be connected to X131 3 I R Infeed regenerative feedback module UE Uncontrolled infeed MM Monitoring m...

Page 42: ...A max 5 V DC 3 mA min 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 74 73 2 73 1 72 X121B X121B X121B X121B Relay signal Ready fault NC I I NO 1 ph 250 V AC 50 V DC 2 A max 5 V DC 3 mA min 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 632 92 4 92 4 642 R5 19 X141AX 141A X141A X141A X141A X141A Pulse enable FR FR Drive enable RESET FR reference ground enable voltage I O O I I O 13 V 30 V RE 1 5 kΩ 24 V 24 V 13 V 30 V RE 1 5 k...

Page 43: ... 30 V RE 1 5 kΩ 13 V 30 V RE 1 5 kΩ 24 V 0 24 V 0 V 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 I input O output NC NC contact NO NO contact 2 Terminal 19 is the reference terminal this is connected in the module with 10 kW to general reference ground X131 It is not permissible to connect terminal 15 with PE or with terminal 19 further no external voltage sources may be connected to terminal...

Page 44: ...No 5SE2125 35 A D02 Neoz B No 5SE2135 Rated voltage 500 V AC 16 A DII Diazed B No 5SB261 25 A DII Diazed B No 5SB281 80 A DIV Diazed B No 5SC211 35 A DIII Diazed B No 5SB411 80 A DIV Diazed B No 5SC211 Rated voltage 500 V AC 16 A size 00 NH B No 3NA3805 25 A size 00 NH B No 3NA3810 80 A size 00 NH B No 3NA3824 35 A size 00 NH B No 3NA3814 80 A size 00 NH B No 3NA3824 125 A size 00 NH B No 3NA3832 ...

Page 45: ...6SN1111 0AA00 6SN1111 1AA00 0CA0 1 0BAV 1 0CAV 1 0DAV 1 1EAV 1 1FAV 1 Lphase 0 15 mH 0 7 mH 0 4 mH 0 27 mH 0 23 mH 0 2 mH In 65 A 30 A 67 A 103 A 150 A 225 A Volt drop phase V3 1 8 6 V 12 3 V 12 3 V V11 1 V15 2 Pv W70 170 W 250 W 350 W 450 W 590 W Connec tion cross section Max 35 mm2 Max 16 mm2 Max 35 mm2 Max 70 mm2 9mm hole 9mm hole Weight max 6 kg 9 kg 20 kg 26 kg 40 kg 50 kg Mounting position A...

Page 46: ... template Dimensions in mm Surface Top view 143 224 max 230 max 330 18 10 Height 290 Surface Top view 138 264 max 225 max 380 18 10 Height 340 Permissible operating mode as a function of the commutating reactor used or the filter module used Table 3 13 Assignment of the commutating reactor filter module to the operating mode I R 16 kW I R 36 kW I R 55 kW I R 80 kW I R 120 kW Commutating reactor ac...

Page 47: ... 0EB0 0FB Pv 170 W 376 W 445 W 550 W 700 W Max connection cross section 16 mm2 50 mm2 70 mm2 9 mm diameter drilling Fuse primary 35 A gL 80 A gL 125 A gL 160 A gL 224 A gL Weight 26 kg 60 kg 60 kg 80 kg 125 kg Terminal assign ment 1U1 1U3 1V1 1V3 1W1 1W3 2U1 2V1 2W1 N Flat connectors 1U1 to 1W1 480 V input 1U3 to 1W3 440 V input 2U1 to 2W1 400 V output N neutral point Drilling template Dimensions ...

Page 48: ... 300 max 480 22 15 Max height 430 Top view 183 410 max 325 max 530 Max height 520 12 5 Top view 198 470 max 360 max 590 Max height 600 15 The following operating conditions are permitted S Supply voltage 3 ph 480 440 400 V AC or 3 ph 220 400 V AC 45 60 Hz1 S Temperature range 25 C 40 C to 55 C with de rating S degree of protection IP00 S humidity rating F according to DIN 40040 for transformers an...

Page 49: ...s can be used to en sure that terminal 48 of the NE module is first de energized before the line con tactor or line switch is opened Recommendation Siemens switches types 3LC 3KA5 from the Catalog SIEMENS Low vol tage switchgear For UE modules 5 kW 10 kW 28 kW Switch type 3LC2047 1TD 3LC4047 2TD 3LC6047 2TD For I R modules 16 kW 36 kW 55 kW 80 kW 120 kW Switch type 3LC4047 2TD 3LC6047 2TD 3KA5330 ...

Page 50: ... can occur which could damage in terfere with other equipment connected to that line supply When using line filters for I R modules for sinusoidal current operation the appropriate HF commutating reactor must be connected in series refer to p 1 46 Connection diagram Fig 3 13 Information regarding machines which are located close to one another at diffe rent potentials Two machines are located clos...

Page 51: ... 0AA0 2 6SN1162 0BA07 0AA0 2 6SN1162 0BA07 0AA0 Module width 150 mm 250 mm 300 mm 2 x 300 mm 2 x 300 mm Filter Filter 26 kg 40 kg 43 kg 2 x 43 kg 2 x 43 kg Irated filter 30 A 67 A 103 A 150 A 225 A Pv filter 290 W 460 W 710 W 1220 W 1420 W Max con nection cross sec tion 16 10 mm2 1 PE potential bonding M5 thread 50 mm2 PE potential bonding M8 thread 50 mm2 PE potential bonding M8 thread 2 x 50 mm2...

Page 52: ...3 LOAD L1 L2 L3 LOAD L1 L2 L3 LOAD L1 L2 L3 Irated fuse 2 35 A 80 A 125 A 160 A 250 A Cooling Non ventilated Non ventilated Non ventilated Non ventilated Non ventilated Radio interfe rence suppres sion EN 55011 Cable borne limit value Class A Cable borne limit value Class A Cable borne limit value Class A Cable borne limit value Class A Cable borne limit value Class A Table 3 18 Filter packages Fi...

Page 53: ... 5 7 kg 12 5 kg Irated filter 16 A 25 A 65 A Pv filter 20 W 20 W W25 Max connection cross sec tion 4 mm2 PE M6 studs 10 mm2 PE M6 studs 50 mm2 PE M10 studs Terminals Line input LINE L1 L2 L3 PE LINE L1 L2 L3 PE LINE L1 L2 L3 PE Terminals output LOAD L1 L2 L3 PE LOAD L1 L2 L3 PE LOAD L1 L2 L3 PE Irated fuse 1 16 A 25 A 80 A Cooling Non ventilated Non ventilated Non ventilated Radio interference sup...

Page 54: ...discharge current there has to be a good PE connection to the filter module line filter and the cabinet The measures according to pr EN 50178 94 Part 5 3 2 1 must be applied e g protective conductor 10 mm2 Cu or a second conductor must be routed in parallel to the protective conductor through separate terminals This conductor must fulfill the requirements for protective conductors according to IEC...

Page 55: ...ed away from each other In this case the power cables from the converter module should be rou ted away towards the bottom and the encoder cable towards the top in order to achieve the largest possible separation All of the control cables connected to the function terminals e g terminals 663 63 48 etc should be grouped together and routed away towards the top Indivi dual cores which are associated ...

Page 56: ...itable screen connecting plates are included in the scope of supply Table 3 20 Module width mm Shield connecting plate for modules with internal cooling 6SN1162 0EA00 external cooling 6SN1162 0EB00 50 0AA0 0AA0 100 0BA0 0BA0 150 0CA0 0CA0 200 0JA0 0JA0 300 0DA0 0DA0 300 for fan pipe 0KA0 If the motor is equipped with a brake then the screen of the brake feeder cable must be connected at both ends ...

Page 57: ...M600 2 M M 1 1 1 1 Supply 1 Shield connection connected through the largest possible surface area with the cabinet mounting panel 2 Shield connection at the module specific connecting panel Encoder cables 1 1 Fuses Incoming terminals Main switch LINE LOAD PE L3 L1 L2 L3 L1 L2 PE PE PE L2 L3 L1 PE V1 U1 W1 V2 U2 W2 V2 U2 W2 Filter Figure 3 12 Connecting diagram for line filters for 5 kW and 10 kW U...

Page 58: ...cific connecting plate 3 For the permissible commutating reactors for I R module sinusoidal operation refer to Sections 3 4 2 and 3 1 Permissible commutating reactor for 28kW UE module refer to Section 3 4 2 Encoder cables 1 1 Incoming terminals Main switch PE PE PE L2 L3 L1 PE V1 U1 W1 V2 U2 W2 V2 U2 W2 Filter L1L2 L3 L1L2 L3 LOAD 1U1 1V1 1W1 1U2 1V2 1W2 HF comm reactor 3 1 1 Î 1 Î 1 Fuses PE LIN...

Page 59: ...es Function cables 1 1 2 Cabinet mounting panel 1 1 1 Supply Incoming terminals Main switch 1 Shield connection connected through the largest possible surface area with the cabinet mounting panel 2 Shield connection at the module specific connecting panel PE PE PE PE V2 U2 W2 V2 U2 W2 V2 U2 W2 V1 U1 W1 V U W L2 L1 L3 Fuses PE Figure 3 14 Connecting diagram for filter modules for the I R modules 16...

Page 60: ... panel 3 The potential bonding conductor is an additional protection so that no inadmissibly high contact voltages can occur at the filter module 2 Shield connection at the module specific connecting panel Incoming terminals Main switch Fuses Supply L2 L3 L1 PE L2 L1 L3 PE PE PE V U W L2 L1 L3 V U W V1 U1 W1 V2 U2 W2 V2 U2 W2 PE PE Figure 3 15 Connecting diagram for two filter modules connected in...

Page 61: ... output currents can be limited by the control module used After the control module has been inserted the retaining screws of the module front panel must be tightened up to guarantee a good electrical connection to the module housing Type plate Order No 50 mm power module Control module refer to Section 7 Order No M3 0 8 Nm M4 1 8 Nm PE Figure 4 1 Power module with control module Power module in t...

Page 62: ... 3 14 8 55 12 5 25 55 9 18 55 dule int 25A 50 6 4 74 3 2 74 4 0 90 3 3 90 4 int 25A 6 5 74 3 2 74 4 0 90 3 3 90 4 Power mo dule int 50 F 6 4 24 32 32 40 24 32 32 40 22 29 29 40 25 50 40 18 36 40 dule int 50 A 50 6 4 260 3 2 260 3 2 260 4 0 180 3 3 190 4 A 7 5 260 3 2 260 3 2 260 4 0 180 3 3 190 4 Power mo S 2 4 8 55 2 3 6 55 Power mo dule int 2 8 A 50 6 4 70 3 3 70 4 2 8 A 7 70 3 3 70 4 Power mo d...

Page 63: ...85 3 2 685 3 2 685 4 0 655 3 3 645 4 A 13 685 3 2 685 3 2 685 4 0 655 3 3 645 4 Power mo dule int 200 F 95 or 85 110 127 55 85 110 127 55 79 102 117 55 100 200 55 70 140 55 dule int 200 A 300 95 or 2 x 35 850 3 2 850 3 2 850 4 0 740 3 3 730 4 A 26 850 3 2 850 3 2 850 4 0 740 3 3 730 4 Power mo dule int F 95 or 85 110 127 55 85 110 127 55 79 102 117 55 100 200 55 70 140 55 dule int 200 A pipe conne...

Page 64: ...6 4 45 29 3 2 45 29 4 0 55 35 3 3 55 35 4 ext 25A 6 5 45 29 3 2 45 29 4 0 55 35 3 3 55 35 4 Power mo F 6 4 24 32 32 40 24 32 32 40 22 29 29 40 25 50 40 18 36 40 Power mo dule ext 50 50 6 4 171 89 3 2 171 89 3 2 171 89 4 0 118 62 3 3 125 65 4 7 5 171 89 3 2 171 89 3 2 171 89 4 0 118 62 3 3 125 65 4 Power mo F 2 4 8 55 2 3 6 55 Power mo dule ext 2 8 50 6 4 43 27 3 3 43 27 4 2 8 7 43 27 3 3 43 27 4 P...

Page 65: ... 108 A 150 50 441 19 3 2 441 19 3 2 441 19 4 0 108 A 13 441 19 3 2 441 19 3 2 441 19 4 0 Power mo dule ext F 50 60 80 102 50 60 80 102 50 55 73 94 50 80 160 55 56 112 55 dule ext W160 A 150 50 655 30 3 2 655 30 3 2 655 30 4 0 625 30 3 3 620 25 4 W160 A 13 655 30 3 2 655 30 3 2 655 30 4 0 625 30 3 3 620 25 4 Power mo dule ext W F 95 or 85 110 127 55 85 110 127 55 79 102 117 55 100 200 55 70 140 55 ...

Page 66: ...be dissipated through pipe cooling Pvext power loss which can be dissipated through external cooling Pvint power loss which is not dissipated via pipe or external cooling This power loss remains in the cabinet X1 Current reduction factor current reduction from the inverter clock frequency f0 of the power transistors refer to the technical data I 100 X1 In Ambient temperature up to 40 C 0 f0 8 0 f1...

Page 67: ...induction motors and main spindle drive applications various S6 load duty cycles defined e g S6 25 å 2 5 min 7 5 min Table 4 3 Currents for an inverter clock frequency f0 3 2 KHz PM module 8 A 15 A 25 A 50 A 80 A 108 A 160 A 200 A 300 A 400 A Irated A3 0 A5 0 A8 0 A24 0 A30 0 A45 0 A60 0 A85 A120 A200 0 7 Irated A2 1 A3 5 A5 6 A16 8 A21 0 A31 5 A42 0 A59 5 A84 A140 I S6 60 A3 0 A5 0 A8 0 A26 0 A34...

Page 68: ...73 0 A102 A138 A229 I S6 30 A2 8 A4 7 A10 0 A29 0 A38 8 A57 8 A79 7 A104 A140 A231 I S6 25 A2 8 A4 9 A10 6 A29 0 A40 7 A59 9 A82 2 A107 A142 A232 I S6 20 A2 8 A5 2 A11 4 A29 0 A42 1 A62 4 A84 7 A110 A146 A233 I S6 10 A2 8 A6 0 A13 8 A29 0 A44 8 A66 6 A89 8 A113 A159 A234 Imax A2 8 A7 3 A14 8 A29 0 A47 0 A70 0 A94 0 A117 A177 A236 The 0 7 Irated current is kept constant Currents are only valid for ...

Page 69: ...e loading condition t I Imax In 2 65 s 10 s Figure 4 5 Peak current load duty cycle without pre loading condition t I Imax In Is6 0 7 In 4 min 10 min Figure 4 6 S6 load duty cycle with pre loading condition t I Imax In Is6 0 7 In 10 s 60 s Figure 4 7 S6 peak current load duty cycle with pre loading condition Rated load duty cycles Rated load duty cycles MSD IM 4 2 Load duty cycle definitions drive...

Page 70: ...1 70 ...

Page 71: ...ntrol module with user friendly interface is available when using1FT5 motors It is only available as 1 axis version An additional parameter board is required which can be used to set all of the axis specific settings It can be inserted from the front This control board can be optionally expanded with the main spindle function option board to be able to handle the requirements of main spindle opera...

Page 72: ...4 216 114 115 108 110 162 75 61 102 X312 noff TN kp Drift M3 0 8 Nm 0 8 Nm M3 0 8 Nm Figure 7 1 Note When using non PELV circuits connected to terminals AS1 AS2 the connec tor must be prevented from being incorrectly inserted using plug coding Order No of the coding refer to Catalog NC 60 1 Closed loop feed control with user friendly interface 7 1 Feed control with user friendly interface and anal...

Page 73: ... controller I component fully effective inef fective R52 Current controller Adaptation motor power module Current actual value normalization Current controller gain Imax 23 100 Ilimit Kp I 0 5 11 5 S2 2 S2 5 S2 6 S2 9 additionally R15 if Kp I 11 5 Current setpoint adaptation Imax 10 0 V R42 Inhibit I component in current controlled operation Current controller without I compo nent R1 Select curren...

Page 74: ...ime expired instanta neous R13 Selection int supplementary setpoint 1 through terminal 22 Selection int supplementary setpoint 2 through terminal 23 10V 10V 10V 10V R16 R17 R18 setpoint R19 R21 R22 setpoint Ready fault signal at termi nals 672 673 674 R33 Smoothing Speed setpoint Speed actual value Speed controller Current setpoint T C4 10 kΩ T C5 5 kΩ T C3 68 kΩ T C6 1 kΩ C4 C5 C3 C6 7 1 1 Functi...

Page 75: ... 10 V 0 V 10 V 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 289 288 290 291 293 294 296 297 299 X341 X341 X341 X341 X341 X341 X341 X341 X341 Relay signals center contact Speed controller at its endstop I2t monitoring Motor overtemperature Tachometer rotorposition enc fault I NO NC NO NC NO NC NO NC 4 Max 30 V 1 A Max 30 V 1 A Max 30 V 1 A Max 30 V 1 A Max 30 V 1 A Max 30 V 1 A Max 30 V 1 A Max 30 V 1 A...

Page 76: ...via terminals 5 1 5 2 and 5 3 of the feed module as the drive should not intervene directly in the machining process and disturb operation There is no internal system shutdown function to protect the motor The user must ensure that the motor can thermally recover immediately after the temperature signal is output by appropriately designing the adaptation control It may be necessary to shut down th...

Page 77: ... spindle drive option In this case the option board should be mounted on the control board this is only possible in conjunction with the user friendly interface X305 Mount on studs using M3x6 screws Tightening torque 0 8 Nm Insert the front connector into the front panel insert the PC board in the locating lugs Establish the connection using X305 Figure 7 2 Mounting MSD option 7 1 3 Option board m...

Page 78: ...dle drive ope ration 30 mV 30 mV referred to nset Pot R96 Proportional gain Reduce Kp to 0 95 Pot R45 parameter board R25 Integral action time Extend TN to 100 1500 Pot R44 parameter board R35 Torque limiting Start of constant power 23 70 nmax Deviation 20 20 nmax Constant limiting 10 100 Imax Speed dependent limiting 1 85 Imax Pot R214 Pot R213 Resistor R76 Pot R225 Changeover speed Main spindle ...

Page 79: ...10 108 115 114 216 214 127 126 X322 X322 X322 X322 X322 X322 X322 X322 Iact IX n nmin n nX nset nset NO NC I NO NC I NO NC I NO NC I 30 V 1 0 A max 30 V 1 0 A max 30 V 1 0 A max 30 V 1 0 A max 30 V 1 0 A max 30 V 1 0 A max 30 V 1 0 A max 30 V 1 0 A max 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 1 5 mm2 _________ 1 I input O output NC NC contact NO NO contact for signal NO high NC low ...

Page 80: ... version 2 axis version 9 Adapt TN KP T Drift 22 9 65 14 56 9 663 AS2 AS1 9 22 9 65 14 56 2 1 X321 X331 T T Adapt TN KP Drift Adapt TN kp Drift 9 663 AS2 AS1 X332 9 22 9 65 14 56 1 2 X T A M M W M W X T A M M W X T A M 0 8 Nm 0 8 Nm M3 0 8 Nm M3 0 8 Nm Version label Figure 7 3 Note When using non PELV circuits connected to terminals AS1 AS2 the connec tor must be prevented from being incorrectly i...

Page 81: ...ontrolled opera tion Current controller without I compo nent S3 8 axis 2 S6 8 Select current controlled operation offline online via terminal 22 S2 10 axis 2 S5 10 Supplementary functions Master slave mode only 2 axis version Master and slave in one module S3 7 and S6 7 Central ready fault signal at terminals 72 73 74 NE monitoring module Relay signal for ready fault not pre sent S3 6 axis 2 S6 6 ...

Page 82: ...general reference ground terminal 15 3 Reference point of the differential input The common mode range of the differential input is 24 V with respect to PE potential and may not be exceeded 4 Refer to p 1 40 Note The drive shuts down and the pulses inhibited after approx 4 s when the heat sink overtemperature switch responds The SIMODRIVE 611 feed modules with the control for 1FT5 servomotors are ...

Page 83: ...ll three contacts switch S1 S4 for the 2nd axis standard interface ON Further an adjustment can be made using discrete resistors Current controller settings The settings for the current limit and current controller gain Kp I can be taken from the adaptation tables Table 1 3 up to Table 1 9 If the required feed mo dule motor combination cannot be found the values can be determined using the associa...

Page 84: ...on the mechanical system which is driven Imax maximum axis current set in A LA motor winding inductance in mH refer to the configuringguide AC motors for feed and main spindledrives Imax LA 40 Kp I t Table 1 2 Current controller gain S2 x and S5 x to ON 6 7 6 7 8 6 8 7 8 9 6 9 7 9 6 7 9 8 9 7 8 9 6 7 8 9 Kp I 0 5 1 2 2 5 4 4 5 5 5 6 6 5 7 5 8 9 5 11 11 5 The setting range of the current controller...

Page 85: ...o o o o o 5 44 8 0 x x x o o o o o 2 5 1 0 5046 VAF71 2 6 3 0 3000 o o o o 8 0 o x o o 2 0 5062 VAC71 5062 VAF71 5062 VAG71 5062 VAK71 2 2 2 2 2 2 2 2 1 3 2 0 2 7 3 9 2000 3000 4000 6000 o o o o x o o o o o o o o o o o 5 44 8 0 8 0 8 0 x o o x x x o o x o x o x x o o 11 5 7 5 4 0 1 0 5064 VAC71 4 5 2 7 2000 o o o o 8 0 o x o x 7 5 5066 VAC71 6 5 3 9 2000 o o o o 8 0 x o x o 4 5 5070 VAC71 5070 VAF...

Page 86: ...x x o x o x x o o 11 0 6 5 5 5 2 5 5064 VAC71 5064 VAF71 5064 VAG71 4 5 4 5 4 5 2 7 4 1 5 5 2000 3000 4000 o o o x o o o o o o o o 10 2 15 0 15 0 o x x o o x x o o x x o 9 5 6 5 2 5 5066 VAC71 5066 VAF71 6 5 6 5 3 9 6 0 2000 3000 o o o o o o o o 15 0 15 0 o o o o x x x o 9 5 4 0 5070 VAC71 5070 VAF71 5070 VAG71 5070 VAK71 3 0 3 0 3 0 3 0 1 8 2 6 3 6 5 3 2000 3000 4000 6000 o o o o o x o o x o o o ...

Page 87: ... 5070 VAG71 5070 VAK71 3 0 3 0 3 0 3 0 1 8 2 6 3 6 5 3 2000 3000 4000 6000 o x o o x o x o o x o o x o o o 7 5 11 5 17 0 25 0 x o o x x x o o x x x o x x x x 11 5 11 0 9 5 6 5 5071 VAC71 5071 VAF71 5071 VAG71 5071 VAK71 4 5 4 5 4 5 4 5 2 9 4 3 5 2 7 9 2000 3000 4000 6000 o o o o o x o o x o o o o o o o 12 5 17 0 25 0 25 0 x x x x x x x x x o o o x x x o 11 5 8 0 8 0 2 5 5072 VAC71 5072 VAF71 5072 ...

Page 88: ...1 5072 VAF71 5072 VAG71 5072 VAK71 10 0 10 0 10 0 10 0 6 1 9 1 12 0 17 5 2000 3000 4000 6000 o x o o o o o o x o o o o o o o 25 0 42 5 50 0 50 0 x o x x x o o x x x o o x x x o 11 5 9 5 6 5 2 5 5073 VAC71 5073 VAF71 5073 VAG71 5073 VAK71 7 0 7 0 7 0 7 0 4 3 6 4 8 1 12 5 2000 3000 4000 6000 o x x o x x o o x o o o o o o o 20 5 30 5 42 5 50 0 x x o x x x x x x o o o x x x o 11 5 8 0 7 5 2 5 5074 VAC...

Page 89: ... 4000 o o o o o o o o o o o o 50 0 50 0 50 0 x x o x x x o o o o o x 8 0 2 5 2 0 5104 VAA71 5104 VAC71 37 0 37 0 14 0 22 5 1200 2000 o o o o o o o o 50 0 50 0 x o x o x x x o 11 5 4 0 5106 VAA71 45 0 17 0 1200 o o o o 50 0 x x o x 8 0 5108 VAA71 55 0 20 5 1200 o o o o 50 0 x o o x 6 5 5132 VAA71 60 0 22 5 1200 o o o o 50 0 o x o x 7 5 1 The specified value is the maximum permissible current of the...

Page 90: ... o o o x o x x x x o x x x x o 11 5 9 5 7 5 5 5 5073 VAC71 5073 VAF71 5073 VAG71 5073 VAK71 7 0 7 0 7 0 7 0 4 3 6 4 8 1 12 5 2000 3000 4000 6000 o x o o o x o x x x x o x o o o 20 8 31 2 40 0 54 4 x x x x x x o x x o o o x x x o 11 5 8 0 6 5 2 5 5074 VAC71 5074 VAF71 5074 VAG71 5074 VAK71 5074 VSG71 5074 VSK71 14 0 14 0 14 0 14 0 16 0 16 0 8 5 13 0 16 5 25 0 19 0 28 0 2000 3000 4000 6000 4000 6000...

Page 91: ...0 14 0 22 5 34 0 1200 2000 3000 o o o x o o o o o o o o 54 4 80 0 80 0 x x x x o x x o o x x o 11 5 6 5 2 5 5106 VAA71 5106 VAC71 45 0 45 0 17 0 26 8 1200 2000 o o o o o o o o 80 0 80 0 x o x x x x x o 11 5 5 5 5108 VAA71 5108 VAC71 55 0 55 0 20 5 32 5 1200 2000 o o o o o o o o 80 0 80 0 x x x o x x x o 11 5 4 5 5132 VAA71 5132 VAC71 5132 VSA71 60 0 60 0 70 0 22 5 35 5 26 0 1200 2000 1200 o o o o ...

Page 92: ... x x x x o x o x o o o o o 41 6 65 6 80 0 97 6 80 0 97 0 x x x x o x x x o x x x x o o o x o x x x o o o 11 5 8 0 6 5 2 5 5 5 2 5 5076 VAC71 5076 VAF71 5076 VAG71 5076 VAK71 5076 VSG71 5076 VSK71 18 0 18 0 18 0 18 0 20 5 20 5 11 5 16 5 21 5 32 0 24 5 36 0 2000 3000 4000 6000 4000 6000 o x o o o o x o x o x o o x o o o o x o o o o o 48 0 73 6 108 8 160 0 108 8 160 0 o o x o o o o x o o x o x o o x ...

Page 93: ...5132 VAA71 5132 VAC71 5132 VAF71 5132 VSA71 5132 VSC71 5132 VSF71 60 0 60 0 60 0 70 0 70 0 70 0 22 5 35 5 47 5 26 0 41 0 55 5 1200 2000 3000 1200 2000 3000 o o o o o o x o o x o o o o o o o o o o o o o o 108 8 160 0 160 0 108 8 160 0 160 0 x x o x x x x x x x x x x o x x o x x x o x x o 11 5 8 0 5 5 11 5 8 0 5 5 5134 VAA71 5134 VAC71 5134 VSA71 5134 VSC71 75 0 75 0 90 0 90 0 28 0 47 0 34 0 56 0 12...

Page 94: ...100 0 136 0 x x o x x x x x x x o x x o x o x o x x o o o o 11 5 8 0 5 5 2 5 4 5 2 5 5100 VAF71 5100 VAG71 5100 VAK71 10 0 10 0 10 0 9 2 12 5 18 0 3000 4000 6000 x o x x x o x o x x x o 46 0 60 0 92 0 x o x x o o o o x x x o 8 0 6 0 4 5 5101 VAC71 5101 VAF71 5101 VAG71 5101 VAK71 15 0 15 0 15 0 15 0 9 4 14 5 17 5 26 5 2000 3000 4000 6000 x o x o x x o x x o x o x x o o 46 0 60 0 92 0 136 0 o o o o...

Page 95: ... 170 0 200 0 100 0 170 0 200 0 x o x x o x x o o x o o x x o x x o x x x x x x 11 5 9 5 6 5 11 5 9 5 6 5 5134 VAA71 5134 VAC71 5134 VSA71 5134 VSC71 75 0 75 0 90 0 90 0 28 0 47 0 34 0 56 0 1200 2000 1200 2000 x o x o x o x o o o o o o o o o 122 0 200 0 122 0 200 0 x x x x x x x x x o x o x x x x 11 5 8 0 11 5 8 0 5136 VAA71 5136 VAC71 5136 VSA71 5136 VSC71 85 0 85 0 110 0 110 0 31 5 47 5 41 0 61 5...

Page 96: ...e speed controller 4 Tachometer adjustment 5 Gain Kp 6 Integral action time TN 7 Adaptation TN if required 8 I component limiting if required 9 Drift compensation offset The unit must be powered up to optimize the speed controller Therefore please refer to p 1 121 Power on The potentiometer scale divisions in the setting tables are defined as follows 8 9 10 7 6 5 4 3 2 0 1 5 1 2 3 4 9 8 7 6 0 10 T...

Page 97: ...ometer adjustment Extending the setting range using R3 and R10 only for the user friendly interface Function Component Mounted nact N 0 7 nrated Increase R3 0 Ω as supplied nact N 2 2 nrated Mount R10 Open as supplied Setting the proportional gain Kp without adaptation The proportional gain Kp of the speed controller can be set using potentiometer Kp The range can be extended if required using the...

Page 98: ...in Kp as a function of the Kp and TN potentiometers Setting the integral action time TN without adaptation The speed controller integral action time is set using potentiometer TN the range can be if required extended using C2 only for the user friendly inter face TN in ms Setting of pot TN 0 10 20 30 40 45 0 1 2 3 4 5 6 7 8 9 10 Fig 2 3 Integral action time TN as a function of potentiometer TN Fee...

Page 99: ...unted Adaptation inactive as supplied Adaptation operates acc to the following diagrams TN TNadapt Potentiometer TN R34 potentiometer ADAPT nx2 nx1 nx Adaptation ineffective Adaptation fully effective Transition range Fig 2 4 Integral action time dependency nx jnsetp nact j 0 9 0 7 0 5 0 3 0 1 0 TNadapt TN R34 10 k R34 0 or standard interface Setting of the ADAPT potentiometer 0 1 2 3 4 5 6 7 8 91...

Page 100: ...ptation inactive as supplied Adaptation operates acc to the following diagrams Kp Kp Kpadapt R38 R50 potentiome ter Kp nx2 nx1 nx Transition range Adaptation fully effec tive Adaptation ineffective Fig 2 6 Proportional gain Kp as a function of the speed nx jnsetp nact j 0 500 1000 1500 2000 2500 Kpadapt Kp 35 25 15 5 0 Fixed resistor R38 in Fig 2 7 Adaptation Kp as a function of R38 in the adaptat...

Page 101: ...ing diagram 150 130 110 90 70 50 30 10 0 0 50 100 150 200 250 300 350 400 R40 in k nx in mV Adap _ ta tion fully eff_ ec tive Transition range Adap tation inef fect ive Fig 2 8 Adaptation range nx jnsetp 1 nact j I component limiting of the speed controller R52 User friendly interface R547 Standard interface 1st axis from Order No 6SN1118 0AD11 0AA1 R550 Standard interface 2nd axis from Order No 6...

Page 102: ...reserved SIMODRIVE 611A Installation and Start Up Guide IAA 04 97 Edition Drift offset Adjusted using potentiometer for nset 0 terminals 56 and 14 connected Potentiometer drift Control range 30 mV J Feed modules VS 04 97 2 8 Drift offset 03 96 ...

Page 103: ... 8 x DIL Function OFF ON 1 Speed setpoint smoo thing No smoothing1 With τ 2 2 ms 2 Speed actual value smoothing No smoothing1 With τ 280 µs 3 Speed controller smoo thing No smoothing1 With τ 370 µs 4 Current setpoint smoo thing No smoothing1 With τ 110 µs 5 Speed contr adaptation OFF1 ON 6 Ready fault2 Ready to run si gnal1 Fault signal 7 Master slave3 4 Master1 Slave4 8 Current controlledopera ti...

Page 104: ...R551 R552 20 kW 1 Response threshold I2t monitoring R553 R554 0 1 kW Axial metal film resistors type of construction 0204 RM 7 62 mm and radial MKT capacitors RM 5 08 mm must be located at the positions provided When adapting the tachometer it should be observed that the resistors have a relative accuracy of 0 1 to one another and a Tk of 25 ppm k The board could be damaged if the incorrect materi...

Page 105: ... formula is valid 5 k 1 Vtach Vtach X 7 5 k 1 4 Vtach Vtach X Rx Vtach d clock frequency PBM If noise problems occur the motor makes a whistling sound then the PWM inverter clock frequency can be changed for both axes together Fig 3 1 In this case it must be observed that the available current In Imax is re duced when the clock frequency is increased refer to Pj Section 4 1 The I2t limiting is set...

Page 106: ...mited by mounting R547 R550 g Electronic weight equalization The value to be set for the electronic weight equalization is obtained from the current setpoint IsetGwa which can be measured at the test socket T for the axis to be enabled at standstill Nset 0 R ISetGwa 10 k 10 V Caution ISetGwa 5V R 20 k After mounting the value at test socket T must be able to be measured with the same polarity with...

Page 107: ...omponent active PI Controller and pulse inhibit via terminal 65 R13 open as supplied R13 0 Ω Delayed Instantaneous Master slave operation Master opera tion R42 R44 0 Ω S2 10 OFF Master operation terminal 258 out put Slave operation R44 0 Ω R1 R42 open S2 10 ON Slave operation terminal 258 input Timer speed controller at its endstop R54 360 kΩ as supplied R54 as selected t 230 ms t ms R54 kΩ 0 56 4...

Page 108: ...3 6 Electronic weight equalization1 R46 R48 open as supplied R46 for neg I set at socket T R48 for pos I set at socket T no weight equalization Suppl I set acc to Fig 3 7 Suppl I set acc to Fig 3 7 Tachometer adaptation2 R6 R7 R8 tolerance 0 1 5 k 1 Vtach Vtach X 7 5 k 1 4 Vtach Vtach X Rx Clock frequency R542 Refer to Fig 3 1 Iset Imax 0 1 1 0 10 0 100 0 1000 0 R12 k 100 90 80 70 60 50 40 30 20 1...

Page 109: ...0 1 3 4 2 6 8 7 5 9 10 0 VT 96 V Iset Imax Final value 1 Fig 3 4 Current setpoint limiting as a function of the voltage at terminal 96 R12 open 0 1 0 R2 kΩ Iset Imax 100 90 80 70 60 50 40 30 20 10 10 0 100 0 Initial value 1 Fig 3 5 Current setpoint limiting as a function of R2 Feed modules VS 04 97 3 2 Setting elements with user friendly interface ...

Page 110: ...t equalization Inverter clock frequency PWM If noise problems occur the motor makes a whistling sound the PWM inverter clock frequency can be adapted by mounting R369 on the basic board In this case it must be observed that the available current In Imax is redu ced when the clock frequency is increased refer to Pj Section 4 1 The I2t limiting is designed for a pulse frequency set in the factory to...

Page 111: ...t controlled Supplementary setpoint X Slave I controlled Current setpoint Main setpoint X Current setpoint input Supplementary setpoint Main spindle drive option Main setpoint X o tion Main spindle drive operation Supplementary setpoint Main spindle drive option Main setpoint X option C axis Supplementary setpoint X X Table 4 2 Motor direction of rotation for a positive setpoint and S2 1 ON Mode T...

Page 112: ...VS 07 94 VS 4 34 Siemens AG 1997 All Rights reserved SIMODRIVE 611A Installation and Start Up Guide IAA 04 97 Edition Feed modules VS 4 Setpoint interfaces ...

Page 113: ...7 6 5 4 3 2 0 1 5 1 2 3 4 9 8 7 6 The setting shown in the diagram corresponds to 7 scale divisions 10 0 Pre settings Warning Parameter board changes Remove R4 R5 and R54 and if necessary C4 when supplied this is not mounted If this is not observed it could result in undesirable axis motion Settings with the control board removed Table 5 1 Ramp up time from 0 V to 10 V in s via terminal 56 14 set ...

Page 114: ...power at the point nmax in via R213 Pot R213 0 1 2 3 4 5 6 7 8 9 10 Deviation in 20 0 20 Table 5 4 Constant torque limiting Iset Imax in via R76 solder pins R76 is open when supplied R76 in kΩ 3 4 3 6 2 8 2 11 15 18 22 27 36 Iset Imax in 10 20 30 40 50 60 70 80 90 100 Intermediate values can be determined by interpolating Table 5 5 Speed dependent torque limiting Iset Imax in via R225 solder pins ...

Page 115: ... 2 2 0 1 8 1 6 1 4 1 2 1 Terminal selected using 0 Ω resistors T 110 R170 R1061 R98 R103 R971 T 108 T 115 T 114 T 216 T 214 T 127 T 126 R1051 R991 R1081 R1711 R107 R1041 nact nset 3 Iact Ix 2 nact nmin 3 nact nx 3 Fig 5 2 Relay functions 1 As supplied 2 Relay drops out 3 Relay pulls in if the function is fulfilled Normalization of jM Pj display Relay function li mit value stage output Feed modules...

Page 116: ...d nset difft20 mV R179 2 kΩ hysteresis 10 mV R180 0 Ω extension 32 ms C20 1 µF Table 5 8 Settings via fixed values Function Component s Effect Ramp function generator tracking R270 0 Ω as supplied R270 open Tracking active Tracking inactive Speed setpoint smoothing C40 τ ms 10 C40 µF Correction setpoint for main spindle operation term 65 brakes to setpo int term 24 2 R900 R901 open as supplied R90...

Page 117: ...eral relay functions inhibited noff shutdown inhibited Settings in operation 1 Set the C axis parameters via the parameter board tachometer TN KP drift C axis parameters refer to the speed controller optimization Section 2 2 Set the main spindle drive parameters via potentiometers on the option board front panel Pot R44 0 2 3 4 5 6 7 8 10 Pot R35 ccw Pot R35 cw 2 15 1 1 1 9 Fig 5 4 Extending the i...

Page 118: ...nd pulse inhibit braking to noff for terminal 64 65 pulse cancellation via potentiometer R1 0 1 2 3 4 5 6 7 8 9 10 noff as a of nmax 0 34 0 47 0 61 0 74 0 88 1 02 1 15 1 29 1 42 1 56 1 69 Table 5 11 Drift compensation via potentiometer R96 for nset 0 Potentiometer R96 Control range 30 mV Analog outputs Function Terminal Boundary condition Speed actual value Term 75 Non normalized speed actual valu...

Page 119: ...1 119 ...

Page 120: ......

Page 121: ...3 interchanged Cable for power connection Cable for rotor position and tachometer Briefly enable term 65 inching Open up the connection between term 63 and term 9 Yes fault No Set 0 V setpoint at the battery box Main switch OFF Enter a low setpoint e g 0 1 V Briefly enable term 65 Yes Does drive run continuously No fault 1 Motor accelerates Connect terminals 48 63 64 663 to terminal 9 Switch open ...

Page 122: ...de IAA 04 97 Edition Enable term 65 Optimize the speed controller or enter experience values Section 2 Inhibit term 65 S Open the connection between term 64 65 and terminal 9 S Remove the battery box from term 56 14 Start up completed Inhibit term 63 Main switch OFF 1 J Feed modules VS 7 Power on ...

Page 123: ......

Page 124: ...ctual value 10 V corresponds to the set Imax output 1 Speed actual value 10 V at rated speed 1FT503V 4V 0AF71 11 V output All outputs have a 1 kW output impedance Fig 8 1 Par board inserted No Yes Yes Yes Yes Yes Pulse enable 663 No No Yes Yes Yes Controller enable 65 No Yes No Yes Yes Current controlled No No No No No Yes Speed controlled operation standard operation 1 Setting value Imax refer to...

Page 125: ...ure is reached non latching the pulses are inhibited fault 1 is displayed and a signal is output at terminal 291 terminal 672 terminal 674 after typically 4 s latching Motor overtemperature SIMODRIVE 611 feed modules with closed loop control for 1FT5 servomotors are equipped with an eva luation circuit for the PTC thermistors integrated in the motor windings The motors are protected from inadmissi...

Page 126: ...eached non latching the pulses are inhibited fault H1 is displayed and a signal is issued at terminal 72 terminal 73 terminal 74 of the NE module after typically 4 s latching Motor overtemperature SIMODRIVE 611 feed modules with closed loop control for 1FT5 servomotors are equipped with an eva luation circuit for the PTC thermistors integrated in the motor windings The motors are protected from in...

Page 127: ...cable and shield correctly connected Motor encoder defective 3 H1 Motor overloaded RMS torque too high 4 H2 Refer to F2 5 H1 Axis mechanically locked RMS torque too high 6 H1 Motor incorrectly connected External moment of inertia too high RMS to high mechanically locked 7 Motor feeder interrupted motor feeder short circuit ground fault Vce monitoring stored up to POWER ON Fault cannot be removed r...

Page 128: ...C Thermistor I f b I f b Current Limit Bits 2 3 4 5 Current Feedback Rectified Speed Feedback Current Controlled Operation Bit 10 Controller Inhibit 65 Pulse Inhibit 663 9 9 FR Monitoring Motor Temperature X351 Ready Fault Signal Fault LED s T 90 C Motor Temperature 611 A Standard feed module Block Diagram 1 Axis Drift Fuse AS1 AS2 TP X TP W Actual Speed Actual Current TP T Current Command X331 X3...

Page 129: ... f b Current Feedback Rectified Speed Feedback Current Controlled Operation S2 Bit 10 Controller Inhibit 65 Pulse Inhibit 663 9 9 FR Monitoring X351 Fault or Status 7 Segment Display Motor Temperature 611 A Comfort feed module Block Diagram 1 Axis rev 4 27 98 Drift Fuse AS1 AS2 I2t Temp Fault 673 674 672 Unit Enable Current Controller Gain S2 Bits 6 7 8 9 96 Supplimentary Command Input 24 20 Fixed...

Page 130: ...62 X71 X60 X69 X54 X59 R4 R5 R3 R1 R2 X51 X56 X52 X57 X53 X58 X50 X55 6 R16 R17 R18 R19 R21 R22 R23 R24 R26 R27 R28 R29 R30 R31 R32 R33 R14 R34 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 X81 X91 X82 Drift Tacho meter Kp N TN Adapt C1 C2 C3 S1 X84 X83 C8 X88 X87 X86 X85 C4 C5 X304 1 2 10 S2 R20 Fig 9 2 Block diagram parameter board Feed modules VS 9 3 Block diagram para...

Page 131: ......

Page 132: ... connections must be exactly as shown Connections for Optional G45 Motor Mounted Brake 24 VDC 10 Current range 0 4 to 3 25 Amps dependent on Motor Brake size If not used all three 3 wires should be connected to ground Tacho R Tacho S Tacho T Tacho M P15 RPG RPD R RPD S RPD T M Grnd PTC PTC Wiring of Motor to Drive Power Cable Wire size dependent on Motor Type NOTE For correct grounding the Drive e...

Page 133: ...he drive group via terminals NS1 NS2 The coil circuit to reliably de energize the line contactor when an error condition occurs can be isolated via terminals NS1 NS2 The terminals must always be jumpered in operation The DC link will not be pre charged if the connection is missing when the unit is powered up The NS1 NS2 connection may only be switched when terminal 48 is ope ned or simultaneously ...

Page 134: ...ority for pulse inhibit and enable The power modules of all the drives are enabled via this terminal The enable and inhibit signals are instantaneous and act simultaneously on all of the modules inclu ding the NE modules The drives coast down unbraked if the signal is with drawn Drive enable terminal 64 The drive modules are enabled using terminal 64 The enable signal acts in stantaneously and sim...

Page 135: ...ndard ready Speed controller at endstop red LED lit Heatsink overtemperature red LED lit Encoder fault red LED lit S5 5 ON Terminal 663 ON Terminal 65 ON Resolver standard ready NC ready Drive ready red LED dark FD MSD digital ready Feed drive user friendly l 2 monitoring Heatsink overtemperature alarm Standard induction motor Motor overtemperature Axis module OK NE ready term 72 74 NO NO NO NO Ye...

Page 136: ...ady relay drops out after the supply failure identification time tN OFF approx 30 ms A A A A A Caution E When shutting down the load supply using a main switch or an external line contactor or using any other switching elements it must be ensured that terminal 48 on the NE module is de energized at least 10 ms prior to this switching operation This can be achieved e g using a main switch with lead...

Page 137: ... L2 L1 100 k L1 L2 L3 1U2 1V2 1W2 1U1 1W1 1V1 Commutating re actor only for I R module and UE 28 kW Line fuses for the I R or UE module PE Supply P600 M600 M600 To the drive modules Main switch Leading contact Power section L 1 Internal line contac tor 1 an d 5 F1 F2 2 6 4 4 4 Important Terminal 48 must be de ener gized 10 ms earlier before the line supply contacts of the main switch open This mea...

Page 138: ...de energized and after 1 sec re energized or the drive must be powered down powered up 6 If an 80 104kW or 120 156kW I R module is used jumper terminal 9 48 must be removed and a switch used due to Point 5 The switch is not required if the drive converter is powered down and up again using the main switch supply 7 Max cable length for 1 5 mm2 cross section 50 m 2 wire cable This should be linearly...

Page 139: ...141 X161 X171 X172 LEDs X181 Pushbutton contact U1 V1 W1 L1 L2 X131PE 100k 5 1 M600 C DCl NE module Drive 1 Drive 2 Drive n Pulsed resistor 1R 2R 3R PE P600 C DCl C DCl C DCl C DCl 2 2 2 Auxiliary power supply Drive 1 Drive 2 Drive n Pulsed resistor module Leading contact L1 L2 L3 PE Supply Ready relay NE module 4 Necessary for I R 80 104kW and 120 156 kW refer to Section 9 3 Commutating reactor o...

Page 140: ...f L1 L2 go into a no voltage condition when the line contactor drops out the drive pulses are canceled terminal 48 In this case L1 and L2 can still be supplied using an uninterruptable power supply UPS IN fuse is defined by the maximum conductor cross section 6 For a coupling to a numerical control connect X131 to the NC reference potential This cable is routed in parallel to the speed setpoint ca...

Page 141: ...gy too high then an additional pulsed resistor mo dule must also be used Dimensioning and engineering the pulsed resistor module and the external pul sed resistor refer to Section 3 2 The energy stored in the DC link which can be used is limited At the supply failure instant for I R modules EDC link contents 130 Σ CDC link 14 for UE modules EDC link contents 70 Σ CDC link 14 EDC link contents in W...

Page 142: ...rs in the vicinity of the rema nence max 1 slot pitch which approximately corresponds to 5 15 Electrical isolation is not provided by the start inhibit function and it does not provide protection against electric shock The complete machine must always be electrically isolated from the line supply through the main switch if any work is to be carried out on the ma chine or system e g maintenance ser...

Page 143: ...llel from the machine control via terminal 663 motor start inhibit for the drive mod ules or via terminal 112 step up controller start inhibit for the supply infeed modules The status of the relay contact located in the pulse power supply cir cuit is signaled to the external adaptation circuit via a positively driven NC con tact The signaling contact is accessible at module terminals AS1 and AS2 a...

Page 144: ...le the cable connection between the connecting terminals and the power contactor must be direct but reliably electrically isolated from the electronics to ensure that there is no feedback Use mode of operation and connection of the line contactor The infeed modules have a standard line contactor integrated in the module itself These contactors are dimensioned to be able to conduct and disconnect t...

Page 145: ...uence and Procedure The comments on p 1 148 must be observed when engineering the system Sequence and procedure when using the start inhibit The drives must be shutdown before terminal 663 is energized which initia tes the start inhibit The speed setpoint input can be externally disconnected and zero speed setpoint input entered as an additional safety function If a fault condition occurs all driv...

Page 146: ...in this case be auto matically isolated from the supply For hanging axis it should be ensured that the drive drives are reliably held so that no energy can be fed back into the DC link The relevant regulations for setting operation must be taken into account The protective devices for the restricted hazardous zone of the drive can now be moved aside i e personnel can enter the hazardous zone If on...

Page 147: ...disconnected while the drive is running In this case the line contactor must isolate all of the drives of the machine and system from the supply All possible fault situations which could occur must be individually simula ted in the signal lines between the acknowledge contacts and the external control as well as the signal evaluation functions of this control In every fault condition the line cont...

Page 148: ... The grounding bar on the NE module is used to ground the DC link M rail through 100 kΩ When using an auto transformer in the setting up mode the user must monitor the DC link voltage and if a fault occurs which results in an increase in the DC link voltage all drives of the machine and system must be isolated from the sup ply In the setting up mode when a hanging axis drops it is possible that th...

Page 149: ...analysis for the complete machine and its safety control in accordance with EEC Machi nery Directive and the equipment safety law The machine manufacturer or the sales marketing party resident in the EU Economic community or their repre sentative must ensure that the complete machine is in full conformance with CE An excerpt of the circuit macro to protect two separate working zones which are equi...

Page 150: ... Door interlocking Access door Danger zone limit Working zone 2 M Door interlocking Access door Danger zone limit T 663 AS2 AS1 T 663 AS2 AS1 T 663 AS2 AS1 T 112 AS2 AS1 Drive 2 Drive 1 Drive 3 I R module 2 2 2 3 3 3 3 NS2 NS1 Supply Figure 9 5 Block diagram of the system to be protected 9 5 9 Application examples ...

Page 151: ...e setting up mode contact S1 key actuated switch must be additionally incorporated 7 When using a main spindle drive induction motor module with ramp func tion generator fast stop 8 No commands may be issued which could initiate or result in a hazardous status VDI 2854 3 3 6 9 Key actuated switch S1 is only required for setting up operation with redu ced DC link voltage 10 Redundancy according to ...

Page 152: ...FF Machine and drives 12 9 9 12 12 6 9 K2 K3 K1 K2 K3 T 111 T 213 T 9 T 9 T 81 T 663 7 4 K2 K3 K6 K7 Main spindle drive induction motor module 12 T 65 e g NC Addit main spin drives induction motor modules T 9 T 9 NS 1 T 64 T 48 NS 2 T 63 4 4 K2 K3 K6 K7 K6 K7 I R module Only floating contacts may be located between NS1 and NS2 11 T 9 T 663 K6 K7 Feed drive module 12 T 65 e g NC Addit feed drive mo...

Page 153: ...K4 K5 K4 K5 K4 K5 ON OFF 9 9 9 12 12 10 10 10 T 111 T 213 Complete drive I R mo dule T 9 T 663 K6 K7 Feed drive module 12 T 65 e g NC Addit feed drive modules L1 PLC K2 K3 5 T 9 T 9 T 81 T 663 7 4 K2 K3 K6 K7 Main spindle drive induction motor module 12 T 65 e g NC Addit main spin drives induction motor modules K4 K5 13 T 9 T 9 NS 1 T 64 T 48 T 63 NS2 4 4 K6 K7 K6 K7 I R module Only floating conta...

Page 154: ...Working zone 2 T 663 drive 1 T 663 drive 2 T 663 drive 3 AS2 1 Terminals for the user T Figure 9 8 Block diagram 1 valid for UE modules 5 10kW to 28 50kW and I R modules 16 21kW to 55 71kW K1 pre charging contactor contact positively driven K2 line contactor contact positively driven Terminals 111 213 NC contacts positively driven to the NO power contacts Terminal P500 M500 terminals for the power...

Page 155: ... AS2 T 9 T 663 FR M Drive n Drive inhibited Working zone 1 T 9 Drive inhibited Working zone 2 T 663 drive 1 T 663 drive 2 T 663 drive 3 AS2 Terminals for the user T K2 K3 L1 L2 Figure 9 9 Block diagram 2 valid for I R module 80 104 kW and I R module 120 156 kW K1 pre charging contactor contact positively driven K2 holding contactor contact K3 line contactor contact positively driven Terminals 111 ...

Page 156: ... to the screen con necting plates accessories of the modules using the clamp connectors provided Refer to P 1 52 for further measures In order to ensure a good connection between the front panel and the housing the front panel screws must be tightened up to 0 8 Nm Terminal X131 electronics ground Refer to Fig 9 1 A varistor module Order No 6SN1111 0AB00 0AA0 can be inserted at con nector X181 on t...

Page 157: ...y network If there are unfavorable line supplies and or grounding conditions at the installa tion site where the equipment is mounted then in exceptional cases cable borne disturbances can occur These are as a result of excessive line reac tance In cases such as these filter modules or line filters should be used can be used with line supply voltages up to 415V Note We recommend that the pre assem...

Page 158: ...1 158 ...

Page 159: ...1 159 MOUNTING DIMENSIONS ...

Page 160: ...1 160 ...

Page 161: ... To Machine s Earth Ground Star Point U2 V2 W2 W2 V2 U2 Alternate Connector Styles depending on Module Size Type 1 Board Retainer Screw Tighten firmly 2 Connector Supplied with PCB 3 Threaded Hole for alternate shield connecting point M5 x 8 Encoder Command Line Shield etc 4 DC Link Cover 5 Clearance hole for M5 Screw all mounting points 6 Heat Shield for 10KW Power Infeed Module NOTE S Siemens En...

Page 162: ... 200 mm 150 mm 15 5 34 55 80 120 KW 300 mm 250 mm 100 mm 50 mm 26 26 29 57 57 64 Monitoring Pulsed Resistor All 50 mm 6SN1112 or 6SN1113 Power Modules 1 Axis 6SN1123 1AA0_ 0HA1 0AA1 0BA1 0CA1 50 mm 7 5 17 0DA1 100 mm 50 mm 9 5 21 0EA1 0LA1 150 mm 100 mm 13 29 0FA1 0JA1 0KA1 300 mm 250 mm 100 mm 50 mm 26 21 24 57 46 53 Power Modules 2 Axis 6SN1123 1AB0_ 0HA1 0AA1 0BA1 50 mm 7 15 4 0CA1 100 mm 50 mm...

Page 163: ... 15mm 8mm 330mm 143mm 224mm 10mm 18mm 230mm REACTOR MOUNTING DIMENSIONS Reactor Part Rated Height Footprint Dimensions 6SN1111 1AA00 0CA0 28 kW 190mm 6SN1111 0AA00 0BA0 and 6SN1111 0AA00 0BA1 16 kW 145mm 6SN1111 0AA00 0CA0 and 6SN1111 0AA00 0CA1 36 kW 232mm 6SN1111 0AA00 0DA0 and 6SN1111 0AA00 0DA1 55 kW 280mm 6SN1111 0AA00 0EA0 80 kW 290mm 1 163 ...

Page 164: ...5mm 156mm Reactor Part Rated Height Footprint Dimensions 6SN1111 0AA00 1EA0 80 kW 200mm 6SN1111 0AA00 0FA0 120 kW 340mm 6SN1111 0AA00 1FA0 120 kW 300mm 330mm 138mm 264mm 10mm 18mm 225mm 380mm 142mm 264mm 10mm 15mm 18mm 8mm 325mm 175mm 225mm 156mm 1 164 ...

Page 165: ...5 1AA00 0CA0 U1 V1 W1 PE1 X131 A A DC Link Cover Ribbon Cable from adjacent Module U1 V1 W1 PE1 X131 A A DC Link Cover Wiring Scheme for the Unregulated Version U E Module commutating reactor not required To PE1 of all other Drive Modules To CNC Star Ground Point 2 3 Sheet 1 3 8 10 98 Required I R U E Connections With Commutating Reactor 4 For explanation of notes see sheet 3 3 6SN1146 1AB00 0BA1 ...

Page 166: ...to sheet 1 Auto Former Output 400 or 480 VAC to Sheet 1 Auxiliary Contact Opens before Power Contacts Incoming Lines See Detail 1 L1 L2 L3 Ground Continue Ground to I R U E Module sheet 1 5 6 Continue Ground to U E Module sheet 1 7 For explanation of notes see sheet 3 3 8 1 8 8 2 L1 L2 L3 PEN Detail 1 TN C Line Configuration Wye connection with Neutral Ground Ground 1 166 ...

Page 167: ...ng to requirements a matching transformer is not required See Planning Guide for Details 8 1 If line configuration is not TN C an isolation transformer with neutral ground connection is required See Planning Guide for proper sizing and configuration details 8 2 If line configuration is TN C an auto transformer can be used to provide correct input voltage 2 60W x 120VAC Voltmeter Machine Ground U1 ...

Page 168: ...any 611A System To CNC Chassis O Volt Reference 611D System To Earth Ground Star Point Monitoring Module if used 6SN1112 Preceding Module Following Module PE1 X131 To Earth Ground Star Point To CNC Ground Star Point Note Mount Reactor as close to I R Module as is practical DC Link P600 M600 R See Note 1 Note 1 Connect M600 link to resistor R This connection provides a reference through 100 k ohms ...

Page 169: ...ctions shown with a and not connected are Optional the one s shown connected are Required for drive operation 3 3 FR FR are internal supplies to be used as a power source for the drive s en ables 3 Places If using an external 24V source for controlling enables connect the external source s P S common to Term 19 Internal Power Source for the Drive s Internal Contactors 4 NS1 NS2 are provided for no...

Page 170: ...odule Interconnection Date Revision Drawn by 8 13 98 Rev A 5 de sc dk Page 3 4 Overvoltage Varistor Module 6SN1111 0AB00 0AA0 Section C The Overvoltage Module is plugged into X181 on the NE Module excepr 5 kW Interface connector X181 is fed through the Overvoltage Module pin for pin NE Module except 5 kW 1 170 ...

Page 171: ... be used at this time F Power Up The green LED should be on indicating that the Pulse X121 63 and Drive X121 64 enable signals are OFF Auxiliary voltages should be present at X141 terminals 7 24V 45 15V 44 15V and 10 24V all with reference to terminal 15 indicating that the low voltage power supply is functioning Enable supply voltage 24V should be present at terminal X121 9 with reference to term...

Page 172: ...ne connections and Arrows are optional NOTES 611 A SERVO STANDARD VERSION 1 2 3 X311 DC Link Cover 6SN1118 0AD11 0AA0 PCB Pwr Sect 6SN1123 1AA0 0 A0 U2 V2 W2 Ribbon Cable BUS 5 K P T N Adapt Drift Balance T Primary Velocity or Torque Command Input Controller Enable FR P24 for Enables Select Torque Mode 10 VDC Twisted Shielded Pair Ground only at CNC end If no CNC connect directly to ground 56 14 6...

Page 173: ...C PTC Page 2 3 Test Points and Fault LED s W M T M X A Test Points LED s W Test Point Actual Motor Current 10V I max as set in S2 DIP 2 3 4 5 M Test Point Common reference for all Test Points T Test Point Current Command X Test Point Actual Motor Speed 40 0 V Tacho 10 V Rated Speed 16 5 V Tacho 11 V Rated Speed M LED Motor Fault Motor to Drive Cable Tachometer Rotor Position Detector A LED Axis Dr...

Page 174: ...with reference to the voltage applied to the Speed Command input terminals 56 14 In Position Loop mode it s effect will be to change the following error when running at speed KP TN Definitions KP is the Proportional Gain and TN is the Integral Gain of the Velocity Loop Preset both adjustments Axis 1 top and Axis 2 bottom to 1 3 Scale After Power Up and terminals 663 65 on this module have been ena...

Page 175: ...Module interconnection a b 4 For additional details on Motor to Drive connections Test Points and the LED display see page 2 3 Test Points and LED s see pg 2 2 A1 A2 A1 A2 A1 Indicates Axis 1 A2 Indicates Axis 2 B Indicates Common to both Axis 1 Axis 2 Axis 2 Axis 1 Axis 1 A1 motor shown A1 A2 B A1 A2 A2 A1 A2 A1 X311 X313 X321 X332 X331 Adjustments Test Points Fault LEDs W2 V2 U2 W2 V2 U2 A1 Rear...

Page 176: ...not fault if this plug is installed 6FX2003 1CF12 Test Points and Fault LED s A1 A2 W M T M X A Test Points LED s S1 A1 S4 A2 Tacho Jumpers close only for motors with 16 5 V Tacho s 6 6 S2 A1 S5 A2 DIP NOTE Underlined Factory setting 10 Torque Current Mode on Velocity Mode off 9 8 Current Loop 7 Gain Factory setting off 6 5 4 Current 3 Limit Factory setting off 2 1 Motor Rotation Direction vs volt...

Page 177: ... motor speed with reference to the voltage applied to the Speed Command input terminals 56 14 In Position Loop mode it s effect will be to change the following error when running at speed KP TN Definitions KP is the Proportional Gain and TN is the Integral Gain of the Velocity Loop Preset both adjustments Axis 1 top and Axis 2 bottom to 1 3 Scale After Power Up and terminals 663 65 on this module ...

Page 178: ... Loop Master Slave Torque Command Iact Actual Motor Current Output X341 289 288 290 291 293 294 296 297 299 672 673 674 Common Input for Contacts Speed Controller at Limit I 2 T Activated Motor Overtemperature Tachometer Rotor Position Detector Ready Fault As received Ready Remove R33 on Parameter PCB Fault U2 V2 W2 1FT5 AC Servo Motor A A Alternate Connector Styles Depending on Module Current Rat...

Page 179: ...0 VDC same as Test Point W NZ Additional input for a speed command Test Points Ready Fault LED Display Parameter Board Installed Terminal 65 Enabled Terminal 663 Enabled A Normal Status Display B Fault Display Numeric Display 1 7 1 I 2 T is Active 2 Rotor Position Detector or Cable Fault 3 Motor Overtemperature 4 Tach Monitoring or Cable Fault 5 I 2 T active and the Speed Controller is at Limit Dr...

Page 180: ... motor speed with reference to the voltage applied to the Speed Command input terminals 56 14 In Position Loop mode it s effect will be to change the following error when running at speed KP TN Definitions KP is the Proportional Gain and TN is the Integral Gain of the Velocity Loop Preset both adjustments Axis 1 top and Axis 2 bottom to 1 3 Scale After Power Up and terminals 663 65 on this module ...

Page 181: ...Select Ramp Time Adjustment Range open 0 01 to 1 1 Sec s closed 0 1 to 11 Sec s Term 61 Select Servo Spindle operation open Spindle closed Servo C Axis To I R Module From Feed Module X331 Terminal 9 P24 Ext 1 2 3 4 1 2 3 4 Term 75 Actual Speed output As delivered Vout 9 45 VDC Motor Rated Speed For very accurate requirements Vout vs Motor Shaft speed must be measured relationship is linear Term 16...

Page 182: ...N 643 V off 618 VDC X151 P600 M600 Required connections 1R 2R 3R PE1 Earth Ground For additional information on terminal definition use and operation see the Planning Guide Sections 3 7 and 3 8 1 This Optional Input is used only when 400 VAC is supplied seperately to the Power Supply 1 place Items shown on the left side of connectors are external connections to be supplied by the installer Externa...

Page 183: ...1 6SN1118 0AA11 0AA1 6SN1114 0AA01 0AA0 50 mm COMFORT WITH SPINDLE OPTION 25 50 A 6SN1130 1AA12 0CA0 6SN1123 1AA00 0CA1 6SN1118 0AA11 0AA1 6SN1114 0AA01 0AA0 50 mm SINGLE AXIS STANDARD 25 50 A 6SN1130 1AD11 0CA0 6SN1123 1AA00 0CA1 6SN1118 0AD11 0AA1 N A 50 mm DOUBLE AXIS MODULE 25 50 A 6SN1130 1AE11 0CB0 6SN1123 1AA00 0CA1 6SN1118 0AE11 0AA1 N A 50 mm SINGLE AXIS COMFORT 40 80 A 6SN1130 1AA11 0DA0...

Page 184: ...E TIGHTENING TORQUE SCREW SIZE TIGHTENING TORQUE SCREW SIZE TIGHTENING TORQUE 6SN1112 1AC01 0AA0 M5 3Nm M4 1 5 to 1 8 Nm M4 1 8 Nm M3 0 8 Nm PULSE RESISTOR MOD EARTH GROUND PE1 RESISTOR 1R 2R 3R P600 M600 BUS BAR CONTROL X221 MODULE SCREW SIZE TIGHTENING TORQUE SCREW SIZE TIGHTENING TORQUE SCREW SIZE TIGHTENING TORQUE SCREW SIZE TIGHTENING TORQUE 6SN1113 1AA00 0AA0 M5 3Nm M4 1 5 to 1 8 Nm M4 1 8 N...

Page 185: ...ber of Pins Grid Dimension 6SY9433 2 5 08 mm 6SY9432 4 5 08 mm 6SY9896 6 5 08 mm 6SY9898 7 5 08 mm 6SY9897 8 5 08 mm 6SY9900 8 7 60 mm 6SY9901 12 5 08 mm 6SY9903 13 5 08 mm 6SY9902 15 5 08 mm 611 A Feed Drive Number Feedback Connector of Pins Order Number 6FC9348 7AT 15 ...

Page 186: ......

Page 187: ...GENERAL INFORMATION REGARDING AC SERVO MOTORS AL S ...

Page 188: ......

Page 189: ...eristics for Continuous operation S1 100 K and S1 60 K Intermittent operation S3 60 100 K S3 40 100 K S3 25 100 K for a 10 min duty cycle Speed limits nmax C F H K S1 60 K 1000 3000 4000 5000 6000 2000 7000 S3 100 K 40 S3 100 K 60 Voltage limiting characteristics Mlimit Mlimit Mlimit Mlimit Examples for winding designs Fig 1 1 Normalized speed torque diagram Characteristics General information on ...

Page 190: ...high overload capability is provided over the complete speed control range The following limits are always valid for the servomotor drive converter module combinations Winding temperature rise TW 100 K M0 60 K M0 100 K Mrated 100 K 1 0 5 1 1 5 2 2 5 3 0 nrated RPM 0 Limiting using the assigned PWM converter Dynamic limiting range 200 ms Continuous operation S1 Speed Winding temperature rise TW 60 ...

Page 191: ...oltage and the increasing motor EMF is available to impress the current This limits the magnitude of the current which can be im pressed at high speeds Warning It is not permissible for the motor to be continuously operated at the voltage limiting characteristic in the range above the S1 characteristic for thermal rea sons The voltage limiting characteristic of a motor with rated speed 6000 RPM li...

Page 192: ...ts reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Table 1 1 Code letter winding version Rated speed RPM Winding version 10th position of the Order No 1200 A 1500 B 2000 C 3000 F 4000 G 4500 H 6000 K General information on AC servomotors 1 1 Definitions ...

Page 193: ...M The new voltage limiting characteristic must for n 2460 RPM be drawn in parallel to the existing characteristic P1 P2 M Nm Mlimit P3 0 82 n RPM nrated 2460 3000 S1 100 K 490 V limiting characteristic 600 V limiting characteristic Mlimit P4 Thermal limiting characteristic Shift DC link 600V DC link 600 V v 700 V Fig 1 4 Shifting the voltage limiting characteristics The new limiting torque with th...

Page 194: ...e the particular rated torque Power which is still available at rated speed and rated torque Max torque which is still available at rated speed for acceleration Motor phase current in order to generate the limiting torque This current limit is determined by the magnetic circuit The magnetic material will be reversibly de magnetized if it is exceeded even for a short time The maximum permissible op...

Page 195: ...ous shaft heights The individual characteristics of the individual 1FT5 6 and 1FK6 motor series are combined to form typical shaft height ranges The lefthand characteristic can be considered as the best case and the righthand as worst case Quotient of the stall torque and stall current kT M0 I0 The constants are valid to approx 2 M0 Important The constants are not valid motor losses when calculati...

Page 196: ... series to the motor winding externally for each phase for armature short circuit braking If the resistor is 0 the optimum braking is achieved without external resistors i e a direct short circuit at the terminals Mb opt corresponds to the average optimum braking torque which can be achieved by modifying the resistance value data going beyond this lie below the achievable measuring accuracy Table ...

Page 197: ...MENS Brushless servomotor 1FT6061 1AF71 4AG0 MADE IN GERMANY Holding brake EBD type Operating voltage power drain Encoder tacho encoder resolver Frame size shaft height type of construction Degree of protection insulating material class thermal protection Rated torque for S1 duty at rated speed induced phase to phase RMS motor voltage 2nd line Additional operating point for 230V drive converter in...

Page 198: ...AL S 08 95 AL S 1 10 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ General information on AC servomotors 01 98 Space for notes ...

Page 199: ... B14 IM V1 IM V18 IM V3 IM V19 Fig 2 1 Type of construction When engineering motors with type of construction IM V3 and IM V19 please observe the permissible axial forces force due to the weight of the rotor and especially on the necessary degree of protection ÓÓÓÓÓÓ ÓÓÓÓÓÓ ÓÓÓÓÓÓ ÓÓÓÓÓÓ ÓÓÓÓÓÓ ÓÓÓÓÓÓ ÓÓÓÓÓÓ ÔÔ ÔÔ ÔÔ ÖÖÖÖÖÖ ÖÖÖÖÖÖ ÖÖÖÖÖÖ ÓÓ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÒÒÒÒÒÒ ÒÒÒÒÒÒ ÒÒÒÒÒÒ ÒÒÒÒÒÒ ÒÒÒÒÒÒ ÒÒÒÒÒÒ ...

Page 200: ...and 1FT6 not for force ventilated motors for 1FK6 DE flange IP67 Radial shaft sealing ring DIN 3760 ÏÏ ÏÏ ÏÏ ÓÓÓ ÓÓÓ ÒÒ ÒÒ ÊÊ ÊÊ For gearbox mounting for gearboxes which are not sealed to seal against oil In order to guarantee the correct func tioning the sealing lip must be ade quately cooled using gearbox oil Lifetime 5000 h IP 68 not for 1FK6 refer to IP 67 further for the mechani cal interface...

Page 201: ...of the list data refer to an ambient temperature of 40 C and assume that the equipment is not mounted so that it is thermally insulated Non ventilated 9 Position of the Order No A The power loss is dissipated by radiation and natural convection which means that the motor must be suitably mounted so that adequate heat dissipation is guaranteed Higher surface temperatures can occur for the servomoto...

Page 202: ... The bearings are sealed on both sides and are permanently lubricated The bearings are designed for operation at a minimum ambient temperature of 15 C The specific versions can be taken from the motor data Note We recommend that the bearings are replaced after approx 20 000 operating hours however at the latest after 5 years Table 2 3 Differences in the various cylindrical shaft ends Characteristi...

Page 203: ...021 mm 71 0 04 mm 0 021 mm 80 0 05 mm 0 025 mm 100 0 05 mm 0 025 mm 132 0 05 mm 0 025 mm Motor shaft Dial gauge Motor Check Radial eccentricity Fig 2 3 Radial eccentricity check Table 2 5 Concentricity and axial eccentricity tolerance of the flange surface to the shaft axis referred to the centering diameter of the mounting flange Shaft height Standard N Option R 36 0 08 mm 0 04 mm 48 0 08 mm 0 04...

Page 204: ...sured at 1 m Table 2 6 Noise Shaft height Sound pressure level under no load conditions dB A 0 to 6000 RPM 36 55 48 55 63 65 71 70 80 70 100 70 132 70 The specified values refer to the motor alone The system vibration characteris tics as a result of the mounting type can increase these values at the motor The speeds of 1800 RPM and 3600 RPM and the associated limit values are defined acc to IEC 34...

Page 205: ...h do not have a negative impact on the function not when op erational e g during transport Table 2 7 Shock stressing Shaft height Acceleration 36 1000 m s2 48 1000 m s2 63 500 m s2 71 300 m s2 80 300 m s2 100 200 m s2 132 100 m s2 The maximum permissible limit values are valid but with full functionality only for motors without brake or with the brake closed 10 m s2 axial 20 Hz to 2 kHz 30 m s2 ra...

Page 206: ...sion x Distance between the application points of force FQ and the shaft shoulder in mm Dimension l Length of the shaft stump in mm Calculating the belt pre tension FR 2 M0 c dR FR N Belt pre tension M0 Nm Motor stall torque dR m Effective diameter of the belt pulley c Pre tensioning factor for the accelerating torque Experience values for toothed belts c 1 5 to 2 2 Experience values for flat belt...

Page 207: ...owards the motor the bearing alignment force can be overcome so that the rotor can move corresponding to the actual bearing axial play to 0 2 mm The permissible axial force can be approximated using the following formula FA 0 35 FQ More accurate data can be taken from the diagrams taking into account the mounting position Table 2 8 Paint finish for 1FT5 1FT6 and 1FK6 1FT5 1FT6 1FK6 Anthracite SN30...

Page 208: ...mounting surfaces Thermally insulated mounting without additional mounted components The motor torque must be reduced by between 5 and 10 We recom mend to configure the system using the M0 60 K values n RPM M Nm 100 Insulated mounting without gearbox with gearbox approx 85 to 95 Non insulated mounting Fig 2 7 S1 characteristics Thermally insulated mounting with additional mounting components Holdi...

Page 209: ...de as follows Mmax gear w M0 100 K f i Mmax gear Maximum permissible drive out torque M0 100 K Motor stall torque i Ratio f Supplementary factor S1 duty f 2 Factor due to gearbox temperature rise S3 duty f f1 f2 f1 2 for motor accelerating torque f2 1 for 1000 switching cycles of the gearbox f2 1 for 1000 switching cycles refer to the Gearbox Catalog Note Switching cycles can also be superimposed ...

Page 210: ...ws MV 2 MV 2 Mmot Mout i hG with MV a b nmot 60 1 hG KT 2 Rph MV calculated torque loss a π 2 for 1FT5 motors fed with squarewave current 1FT5 π 3 for 1FT6 motors fed with sinusoidal current b 0 5 weighting factor for gearbox losses no dimensions nmot Motor speed RPM Rph Thermal resistance of the motor phase Ω 1 4 Rph list Mout Gearbox drive out torque Nm i Gearbox ratio i 1 ηG Gearbox efficiency ...

Page 211: ...hat the accelerating torque must also be transferred Alternatively a clamping hub with groove or the special version with two clamp ing screws can be used The investigations also involve the vibration characteristics The couplings as signed to the motors permit higher gain factors in the speed control loop which can possibly result in higher kV values and more uniform motion For ROTEX GS three var...

Page 212: ...ing brake is not used for a longer period of time a deposit can form on the brake assembly and armature disk This can result in a lower holding torque Supply voltage 24 V DC 10 To prevent overvoltages at shutdown and possible noise emission into the envi ronment the brake feeder cable must be provided with a free wheeling diode or an adapted varistor 1 In order to prevent noise as a result of puls...

Page 213: ... must also be pro vided between the coil and contact of relay K1 The PELV power supply may not be used for the holding brake refer to the recommended circuit Note You must always ensure that there is a minimum 24 V 10 available at the connector on the motor side in order to guarantee that the brake opens cor rectly The voltage drop across the power cable brake conductors must be taken into account...

Page 214: ...AL S 08 95 AL S 2 16 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ General information on AC servomotors 2 2 Mounted integrated components Space for notes 01 98 ...

Page 215: ...bsolute traversing range For servomotors with integrated holding brake the holding brake can be simul taneously de energized in order to generate an additional braking force this braking torque is somewhat delayed Caution The drive converter pulses must always first be cancelled before an armature short circuit contactor is closed This prevents the contactor contacts burning which could destroy th...

Page 216: ...J in kgm2 w in s 1 Braking times and braking travel In order to calculate the maximum braking times and braking travel the average braking torque the complete moment of inertia and the rated speed must be known The braking time is calculated from the following formula Jtot 9 55 tB 1 2 nrated MB Jtot JM Jexternal s Vmax tB J kgm2 nN RPM MB NM tB s s m Vmax m s Braking time Moment of inertia Braking...

Page 217: ... resistor Mbr opt Mbr rms nrated Speed n 0 Mbr Ibr rms nrated 0 Ibr nrated Speed n Run on time t nrated 0 Ibr rms nrated Speed n 0 Ibr 0 Run on time t Speed n 0 Speed n Fig 3 1 Armature short circuit braking M 3 SIMODRIVE Rbr U V W 1FTVVVV Fig 3 2 Circuit principle circuit for armature short circuit braking J General information on AC servomotors 3 Functions options 10 96 ...

Page 218: ...AL S 08 95 AL S 3 4 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ General information on AC servomotors 3 Functions options 10 96 Space for notes 01 98 ...

Page 219: ...pplication whether the internal control devices in the drive converter are adequate to elec trically isolate it from the line supply When carrying out any work on the system it should always be in the no volt age condition powered down Table 4 1 specifies the permissible current load capability acc to DIN VDE 0113 Part 1 02 86 Electrical equipment on industrial machines for PVC insulated cables wi...

Page 220: ...ables result in capacitive charges The assignment motor cross section power connector is specified in the ap propriate motor chapters 4 2 Signal cable Pre assembled cables offer many advantages over self assembled cables In addition to guaranteeing the correct function and the high quality there are also cost benefits In order to eliminate any effects of noise the signal cables must be routed sepa...

Page 221: ...002 5AAVV VVV0 without overall screen 1 U 2 V 6 W V U W Servomotor Connector sizes 1 1 5 2 3 SIMODRIVE Conductor end sleeves acc to DIN 46228 S with brake cables Order designation 6FXV002 5DAVV VVV0 with overall screen 6FXV002 5BAVV VVV0 without overall screen 1 U 2 V 6 W 4 5 V U W Servomotor Connectors sizes 1 1 5 2 3 SIMODRIVE Conductor end sleeves acc to DIN 46228 Br Br Screen Note S Performanc...

Page 222: ...20 m 30 m 40 m 50 m 60 m 70 m 80 m 90 m 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m A B C D E F G H J K Examples 1 m 2 m 5 m 10 m 15 m 18 m 20 m 25 m 50 m 100 m 150 m 6FXV 002 VVVVV 1AB0 6FXV 002 VVVVV 1AC0 6FXV 002 VVVVV 1AF0 6FXV 002 VVVVV 1BA0 6FXV 002 VVVVV 1BF0 6FXV 002 VVVVV 1BJ0 6FXV 002 VVVVV 1CA0 6FXV 002 VVVVV 1CF0 6FXV 002 VVVVV 1FA0 6FXV 002 VVVVV 2AA0 6FXV 002 VVVVV 2FA0 You will find the...

Page 223: ...MODRIVE 611 PJ 5 4 2 1 6 V W U V W U V W U Connector size 1 Connector size 1 5 Connector size 2 Connector size 3 Brake W Brake U V Fig 4 1 Connector assignments when viewing the connector side J Connector assignments General information on AC servomotors 4 3 Cable versions ...

Page 224: ...AL S 08 95 AL S 4 6 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ General information on AC servomotors 4 3 Cable versions Space for notes 01 98 ...

Page 225: ...1FT5 AC SERVO MOTOR DESCRIPTIONS 1FT5 ...

Page 226: ......

Page 227: ... directly assigned to the functional requirements The motors are designed for operation on a 600 V DC link and are impressed with squarewave current Together with the analog SIMODRIVE 611 they form a complete drive system For DC link voltages which differ from 600 V max 700 V the voltage limiting characteristic is shifted as described in Chapter ALS 1 1 Note If the drive converter is connected to ...

Page 228: ...0 94 2500 m Factor 0 9 Magnetic materials Rare earth materials Electrical connection Connectors for power and encoder signals The connector outlet direction can be selected Encoder system Integrated analog tachometer Speed sensing Magnetic sensor or Hall sensors Sensing the rotor position Table 1 2 Options Technical features Version Degree of protection IP67 only self ventilated IEC 34 5 Cooling F...

Page 229: ...2 8 9 1 1 1 1 1 1 2 2 2 2 4x1 5 4x1 5 4x1 5 4x1 5 4x1 5 4x1 5 4x4 4x6 4x10 4x10 5VA01 1VV0 5VA01 1VV0 5VA01 1VV0 5VA01 1VV0 5VA01 1VV0 5VA01 1VV0 5VA12 1VV0 5VA22 1VV0 5VA32 1VV0 5VA32 1VV0 75 90 105 95 120 145 45 50 60 80 110 130 132 0AC71 134 0AC71 136 0AC71 132 0SC71 134 0SC71 136 0SC71 44 56 59 56 75 81 80 80 80 80 80 801 9 4 10 5 12 6 16 8 23 0 27 2 3 3 3 3 3 3 4x16 4x16 4x16 4x10 4x25 4x25 5...

Page 230: ... 1VV0 2 6 5 5 8 12 18 22 20 5 26 2 1 3 0 4 2 5 0 7 0 4 0 12 15 062 0AK71 064 0AK71 066 0AK71 072 0AK71 074 0AK71 076 0AK71 074 0SK71 076 0SK71 4 6 9 8 14 5 21 0 32 0 39 0 36 0 46 0 7 5 12 5 25 25 40 40 40 401 1 3 1 9 2 6 3 1 4 4 2 5 7 5 9 4 1 1 1 2 2 2 2 3 4x1 5 4x1 5 4x2 5 4x4 4x6 4x10 4x10 4x16 5VA01 1VV0 5VA01 1VV0 5VA11 1VV0 5VA12 1VV0 5VA22 1VV0 5VA32 1VV0 5VA32 1VV0 5VA23 1VV0 1 Core type 0 ...

Page 231: ... 3 1 5 2 8 2 12 0 18 0 23 0 4 7 5 12 5 12 5 25 25 0 94 1 5 2 3 3 5 4 7 6 3 1 1 1 2 2 2 4x1 5 4x1 5 4x1 5 4x2 5 4x2 5 4x4 5VA01 1VV0 5VA01 1VV0 5VA01 1VV0 5VA02 1VV0 5VA02 1VV0 5VA12 1VV0 without brake cable without overall screen A with overall screen C with brake cable without overall screen B with overall screen D Lengths2 5 m AF examples 10 m BA 15 m BF 18 m BJ 25 m CF Cables are not included w...

Page 232: ...horter The rating of the resistors must be harmonized with the I2t load capability refer to Chapter 3 General information on AC servomotors AL S Table 1 3 Resistor braking for motors 1FT5 shaft heights 36 and 48 Motor type External brake resistor Ropt Ω Average brak ing torque Mbr rms Nm Max braking torque Mbr max Nm RMS braking current Ibr rms A 1FT5034 VAK71 4 7 1 5 1 5 1 9 4 1 3 9 1FT5036 VAK71...

Page 233: ... 9 4 9 9 2 3 7 9 0 11 5 11 3 11 5 11 2 9 8 8 9 14 6 13 1 20 1 18 0 28 8 25 8 Table 1 5 Resistor braking for 1FT5 motors shaft height 71 Motor type External brake resistor Ropt Ω Average brak ing torque Mbr rms Nm Max braking torque Mbr max Nm RMS braking current Ibr rms A 1FT5072 VAC71 1FT5072 VAF71 1FT5072 0AG71 1FT5072 0AK71 4 7 3 9 3 3 2 7 7 7 10 0 6 5 10 1 5 6 10 3 4 0 9 8 12 5 12 5 12 6 12 4 ...

Page 234: ...FT5108 VAC71 1FT5108 0AF71 0 82 0 56 0 39 73 0 102 0 51 0 100 0 43 0 101 0 126 0 123 0 125 0 71 0 64 5 105 0 93 0 167 0 149 0 Table 1 7 Resistor braking for 1FT5 motors shaft height 132 1 Motor type External brake resistor Ropt Ω Average brak ing torque Mbr rms Nm Max braking torque Mbr max Nm RMS braking current Ibr rms A 1FT5132 0AA71 1FT5132 0AC71 1FT5132 0AF71 1 0 0 56 0 56 61 5 98 5 51 0 101 ...

Page 235: ...0 122 0 Table 1 9 Resistor braking for 1FT5 motors shaft height 132 force ventilated 1 Motor type External brake re sistor Ropt Ω Average brak ing torque Mbr rms Nm Max braking torque Mbr max Nm RMS braking current Ibr rms A 1FT5132 0SA71 1FT5132 0SC71 1FT5132 0SF71 1 0 0 56 0 56 61 5 98 5 51 0 101 0 35 5 100 0 123 0 128 0 124 0 65 0 58 0 114 0 103 0 140 0 125 0 1FT5134 0SA71 1FT5134 0SC71 0 68 0 ...

Page 236: ...r rms A 1FT5070 0AC71 1FT5070 0AF71 2 8 2 4 3 7 3 6 3 0 4 4 1FT5071 0AC71 1FT5071 0AF71 4 3 3 8 6 3 6 4 5 5 8 5 1FT5073 0AC71 1FT5073 0AF71 4 7 3 9 7 2 9 1 5 9 9 1 11 3 11 3 9 7 8 8 14 7 13 3 1FT5100 0AC71 1FT5100 0AF71 3 3 2 7 10 0 14 5 8 0 14 5 18 1 18 0 15 8 14 3 23 8 21 4 1FT5101 0AC71 1FT5101 0AF71 2 2 1 5 15 0 24 0 11 9 23 5 29 0 28 7 26 0 23 5 39 0 34 5 1FT5103 0AC71 1FT5103 0AF71 1 5 1 2 2...

Page 237: ...e principle i e the brake is closed when in the no current condition However the brake can be released in the no voltage condition using a manual release lever The working brake cannot be ordered in conjunction with integrated or mounted position encoders Further the brake can only be mounted on standard non ventilated motors not short motors Mounting Non drive end Degree of prot IP 43 Connection ...

Page 238: ...4 D9 V F4 K2 V F2 1FT5034 181 23 11 70 SPG 060 M01 20 28 129 60 16 5 5 68 62 262 70 1FT5036 206 287 1FT5042 165 30 14 92 SPG 075 M01 20 36 156 70 22 6 6 85 76 265 90 1FT5044 190 290 1FT5046 240 340 1FT5062 241 40 19 115 SPG 100 M01 30 58 202 90 32 9 120 101 355 100 1FT5064 281 395 1FT5066 321 435 1FT5072 273 50 24 142 SPG 140 M01 30 82 257 130 40 11 165 141 418 140 1FT5074 323 468 1FT5076 373 518 ...

Page 239: ...5 30 14 92 292 90 1FT5044 190 317 1FT5042 165 30 14 92 SPG 100 M02 30 58 235 90 32 9 120 101 312 100 1FT5044 190 337 1FT5046 240 387 1FT5062 241 40 19 115 388 1FT5064 281 428 1FT5064 281 40 19 115 SPG 140 M02 30 82 297 130 40 11 165 141 466 140 1FT5066 321 506 1FT5072 273 50 24 142 458 1FT5072 273 50 24 142 SPG 180 M02 30 82 316 160 55 13 215 182 477 140 1FT5074 323 527 1FT5076 373 577 1FT5072 273...

Page 240: ...0 12 1FT5036 X X X X 32 3 1FT5042 SPG 075 M01 2 8 X X X X 6000 100 3800 0 57 0 4 1FT5044 X X X X 80 3 1FT5046 X X X X 1FT5062 SPG 100 M01 6 2 X X X X 4500 250 6000 2 0 1 3 1FT5064 X X X X 200 3 1FT5066 X X X X 1FT5072 SPG 140 M01 11 5 X X X X 4000 500 9000 5 7 3 5 1FT5074 X X X X 400 3 1FT5076 X X X X 1FT5102 SPG 180 M01 27 X X X X 3500 1100 14000 30 6 17 4 1FT5104 X X X X 880 3 1FT5106 X X X X 1F...

Page 241: ... X X X X 6000 100 3800 0 47 1FT5036 X X X X X 1FT5042 X X X X 0 52 1FT5044 X X 1FT5042 SPG 100 M02 7 1 X 4500 250 6000 1 7 1FT5044 X X X 1FT5046 X X X X X 1FT5062 X X X X X 1 8 1FT5064 X X 1FT5064 SPG 140 M02 14 5 X X X 4000 500 9000 4 4 1FT5066 X X X 1FT5072 X X 5 1 1FT5072 SPG 180 M02 29 X X 4000 1100 14000 5 5 1FT5074 X X X 1FT5076 X X 1FT5072 SPG 210 M02 51 X 3000 1600 15000 6 25 1FT5074 X X 1...

Page 242: ...ounted radial fan The modified dimensions should be taken from the dimension drawings Termination technology terminal boxes Supply voltages 3 ph 400 460 V AC 50 60 Hz Max current 0 4 A Weight of the fan assembly approx 5 6 kg W2 U2 V2 U1 V2 W3 L1 L2 L3 Fig 1 3 Fan connection shaft heights 100 132 Shaft height 71 Airflow direction from the non drive end to the drive end The available torque is redu...

Page 243: ...Technical explanations and ordering address refer to Chapter 2 2 General in formation AL S Table 1 18 Allocating the drive out couplings to the motors Shaft height Rotex GS Type Torques which can be transmitted with 98 Sh A GS pinion TKN Nm TKmax Nm 63 24 28 60 120 71 28 32 160 320 100 38 45 325 650 It may be necessary to use other pinions e g Shore hardness 80 Sh A This must be optimally harmoniz...

Page 244: ...8 11 12 7 6 gn ye wh bn 4 3 2 vi 1 pk LG whgn gy rd rd rd whbn whbn whbn V2 W2 U2 L1 L 2 L3 3 3 9 10 bu bk rd bu U V W 9 8 12 7 6 11 5 4 3 2 10 1 U V W BR BR2 ϑ V U W bk rd og yegn rd bu 3UN6 9 Fig 1 4 Connection assignment Power brake tachometer position encoder and PTC thermistor Circuit diagrams 1FT5 AC servomotors 1 3 Interfaces ...

Page 245: ...1FT5 1 19 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ 1 4 Thermal motor protection Refer to GE Chapter 1 1 5 Encoder Refer to GE Chapter 1 J 1FT5 AC servomotors 1 4 Thermal motor protection ...

Page 246: ...1FT5 08 95 1FT5 1 20 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ 1FT5 AC servomotors Space for notes 01 98 ...

Page 247: ...the second block The third and fourth blocks are provided for additional data 1 0 Electric motor Synchronous motor AC servomotor Series Frame size Length Principle Cooling type A Non ventilated S Force ventilated Rated speed A 1200 RPM C 2000 RPM F 3000 RPM G 4000 RPM K 6000 RPM DC link voltage 7 600 V Type of construction 1 IM B5 IM V1 IM V3 Termination type Power connector connection bracket for...

Page 248: ...S ROC 424 Heidenhain company S CE 65 04 418 031 T R company S CR 58 TWK company S AG 661 21 26 Stegmann company S 6FX2 Siemens G51 Motor with integrated ROD 320 pulse encoder 3 6 5000 pulses revolution 2500 pulses revolution 2000 pulses revolution 1250 pulses revolution H04 G44 G42 H01 Holding brake integrated G45 Motor with mounted planetary gearbox VVV Mounted working brake 4 C00 Retrofit set pr...

Page 249: ...coder A Additionally prepared for encoder mounting E Additional ROD 320 pulse encoder integrator 1 F only shaft heights 63 73 and 100 2500 pulses rev Shaft with key and keyway without holding brake A Shaft with key and keyway with holding brake B Smooth shaft without holding brake G Smooth shaft with holding brake H 1 F T 5 A not for shaft heights 36 48 63 1 Limiting frequency 250 kHz motors may o...

Page 250: ...3 Nm at T 100 K S Type of construction IM B5 IM V1 IM V3 S Connection type Power connector for motor brake signal connector for the encoder system S With integrated holding brake S With mounted ROD 426 pulse encoder 1000 pulses rev The following should be ordered Order No 1FT5 AC servomotor 1FT5102 0AF71 1 Z nrated 3000 RPM M0 33 Nm at T 100 K Special version Codes S Integrated holding brake G45 S...

Page 251: ...ions apply Motors shaft heights 36 48 63 and 71 may only be utilized to DT 60 K Shaft heights 100 and 132 may still be utilized acc to DT 100 K The shift of the voltage limiting characteristics is described in Chapter ALS 1 1 The specified thermal limiting characteristics are referred to DT 100 K 3 1 1 Standard motors Note The rotor moment of inertia for 1FT5 motors is specified without tachometer...

Page 252: ...1 6 0 74 0 67 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 9000 3 6 6 5 1 4 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms ms min kg kg...

Page 253: ...2 3 1 03 0 96 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 9000 5 2 9 5 2 5 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms ms min kg kg...

Page 254: ... 1 73 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 5500 4 0 4 5 2 5 8300 4 0 7 0 1 9 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms ms ...

Page 255: ... 5 3 4 3 14 2 8 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 5500 8 0 8 5 5 0 8300 8 0 14 0 3 6 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Oh...

Page 256: ...3 5 31 4 93 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 5500 14 8 16 0 8 0 8300 14 8 26 0 6 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm...

Page 257: ...Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 10 4 6 6 5 0 4800 10 4 10 0 5 0 6400 10 4 13 5 4 9 8600 10 4 20 0 4 8 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A ...

Page 258: ... Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 22 14 0 10 0 4800 22 20 0 10 0 6400 22 29 0 9 8 8600 22 42 0 9 6 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 10...

Page 259: ...ax speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 32 20 0 14 8 4900 32 31 0 14 8 6400 32 41 0 14 8 8600 32 61 0 14 4 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 10...

Page 260: ...mit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 40 29 0 15 0 4800 40 43 0 16 0 6300 40 60 0 18 0 7000 40 89 0 16 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m...

Page 261: ...it data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 56 45 0 24 0 4900 56 67 0 24 5 6200 56 90 0 24 5 7000 56 104 0 22 5 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m...

Page 262: ...9 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 72 52 0 39 0 4800 72 78 0 38 0 6200 72 110 36 0 7000 72 163 36 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m...

Page 263: ...51 136 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 108 47 0 52 0 3200 108 80 0 57 0 4900 108 120 0 57 0 6200 108 164 0 45 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Te...

Page 264: ...5 210 185 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 148 64 0 80 0 3200 148 110 0 78 0 4800 148 164 0 80 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m ...

Page 265: ... 264 239 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 180 80 0 90 0 3200 180 130 0 98 0 5000 180 200 0 102 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m ...

Page 266: ...15 290 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 2000 220 95 0 120 0 3100 220 164 0 120 0 4900 220 247 0 125 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m ...

Page 267: ...39 464 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 2000 240 112 0 129 0 3100 240 186 0 115 0 3200 240 236 0 112 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m...

Page 268: ... 0 665 590 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 2000 300 134 0 164 0 3200 300 222 0 156 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM ...

Page 269: ... 0 791 716 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 340 156 0 180 0 2900 340 234 0 170 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM ...

Page 270: ...9 0 48 5 980 905 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 2000 420 194 0 220 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms ms mi...

Page 271: ...20 5 28 0 36 0 44 2 36 7 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 6200 56 90 0 24 5 7000 56 104 0 22 5 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V ...

Page 272: ... 0 36 0 46 0 58 4 50 9 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 6200 72 110 0 36 0 7000 72 163 0 36 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1...

Page 273: ...0 0 39 5 46 5 161 136 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 4900 108 120 0 57 0 6200 108 164 0 45 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V ...

Page 274: ... 58 0 44 0 53 0 210 185 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 4800 148 164 0 80 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms...

Page 275: ...70 0 54 0 66 0 264 239 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 5000 180 200 0 102 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms...

Page 276: ...75 0 539 464 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 240 112 0 129 0 3000 240 186 0 115 0 3200 240 236 0 110 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech T...

Page 277: ...56 0 75 0 665 590 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 300 134 0 164 0 3200 300 222 0 156 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 10...

Page 278: ... 61 5 81 0 791 716 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 340 156 0 180 0 2900 340 234 0 170 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1...

Page 279: ...185 0 52 0 69 0 980 905 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 1900 420 194 0 220 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH m...

Page 280: ...5 2 6 3 1 16 5 9 0 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3000 12 8 0 6 0 4600 12 12 0 6 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM O...

Page 281: ...2 20 5 13 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3300 18 13 0 8 0 5000 18 21 0 8 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms...

Page 282: ...27 5 20 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 28 21 0 15 2 4800 28 32 0 15 4 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH ms...

Page 283: ... 0 84 59 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 3200 40 32 0 19 5 4800 40 47 0 20 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Ohm mH m...

Page 284: ... 5 18 0 110 85 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 2700 60 46 0 32 0 4200 60 66 0 35 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM Oh...

Page 285: ... 5 23 0 195 110 Limit data Max speed Max torque Peak current Limiting torque nmax Mmax Imax Mlimit RPM Nm A Nm 2700 76 62 0 45 0 4200 76 93 0 45 0 Physical constants Torque constant Voltage constant Winding resistance Three phase inductance Electrical time constant Mechanical time constant Thermal time constant Weight with brake Weight without brake kT kE Rph LD Tel Tmech Tth m m Nm A V 1000 RPM O...

Page 286: ... AS is the absolute permissible force without taking into account the bearing alignment force the rotor weight the mounting position as well as force direc tion Caution Axial forces are not permissible for motors with integrated holsing brake Definition refer to Chapter 2 1 General information on AC servomotors AL S Cantilever force Axial force 1FT5 AC servomotors 3 2 Cantilever axial force diagra...

Page 287: ...bearing lifetime of 20 000 hours 20 10 x mm FQ 0 23 30 n 2000 RPM n 3000 RPM n 4500 RPM n 6000 RPM n 8000 RPM 0 100 200 300 Permissible axial force as a function of the cantilever force N FQ AS 100 200 300 0 0 100 200 N 300 FA AS 8000 n 2000 RPM 3000 6000 4500 Cantilever force 1FT5034 to 1FT5036 Axial force 1FT5034 to 1FT5036 1FT5 AC servomotors 3 2 Cantilever axial force diagrams ...

Page 288: ...0 hours 100 200 300 20 10 x mm FQ 400 0 30 500 600 n 2000 RPM n 3000 RPM n 4500 RPM n 6000 RPM n 8000 RPM N Permissible axial force as a function of the cantilever force N FQ AS 400 500 100 200 300 0 0 100 200 300 FA AS 8000 n 2000 RPM 3000 6000 4500 400 500 N 600 Cantilever force 1FT5042 to 1FT5046 Axial force 1FT5042 to 1FT5046 1FT5 AC servomotors 3 2 Cantilever axial force diagrams ...

Page 289: ...00 0 30 N n 1000 RPM n 1500 RPM n 2000 RPM n 3000 RPM n 6000 RPM 600 1000 1400 1800 2200 10 n 120 RPM n 300 RPM n 600 RPM 41Cr4V Permissible axial force as a function of the cantilever force 2500 FQ AS 1000 2000 3000 0 0 1000 2000 N FA AS 3000 n 60 RPM 1000 2000 1500 500 1500 3500 N 600 300 120 6000 Cantilever force 1FT5062 to 1FT5066 Axial force 1FT5062 to 1FT5066 1FT5 AC servomotors 3 2 Cantilev...

Page 290: ...00 RPM 400 800 1200 40 20 x mm FQ 1600 0 30 2000 600 1000 1400 1800 N 10 41Cr4V 2400 60 50 n 1500 RPM n 2000 RPM n 3000 RPM n 6000 RPM Permissible axial force as a function of the cantilever force 2500 FQ AS 1000 2000 3000 0 0 1000 2000 N FA AS 3000 n 60 RPM 1000 2000 1500 500 1500 3500 N 600 300 120 6000 Cantilever force 1FT5072 to 1FT5076 Axial force 1FT5072 to 1FT5076 1FT5 AC servomotors 3 2 Ca...

Page 291: ...Cantilever force FQ at distance x from the shaft shoulder for a nominal bearing lifetime of 20 000 hours Permissible axial force as a function of the cantilever force Cantilever force 1FT5102 to 1FT5104 Axial force 1FT5102 to 1FT5104 1FT5 AC servomotors 3 2 Cantilever axial force diagrams ...

Page 292: ...Cantilever force FQ at distance x from the shaft shoulder for a nominal bearing lifetime of 20 000 hours Permissible axial force as a function of the cantilever force Cantilever force 1FT5106 to 1FT5108 Axial force 1FT5106 to 1FT5108 1FT5 AC servomotors 3 2 Cantilever axial force diagrams ...

Page 293: ... 300 RPM n 600 RPM 0 x mm 0 10000 12000 14000 11000 N n 1000 RPM 70 40 20 30 10 60 50 80 n 1500 RPM n 2000 RPM n 3000 RPM n 4000 RPM n 6000 RPM Permissible axial force as a function of the cantilever force 4000 5000 FQ AS 2000 4000 0 0 FA AS n 60 RPM 1000 3000 5000 1000 3000 7000 11000 9000 N 14000 N 7000 9000 6000 8000 11000 6000 3000 2000 1500 Cantilever force 1FT5132 to 1FT5136 Axial force 1FT5...

Page 294: ... 1600 N 600 1000 1400 1800 St60 2 n 3000 RPM n 6000 RPM n 60 RPM n 300 RPM n 600 RPM 200 40 20 x mm 0 30 10 2200 n 1500 RPM n 1000 RPM n 120 RPM Permissible axial force as a function of the cantilever force FQ AS 1000 2000 0 0 1000 N FA AS 3000 n 60 RPM 1000 2000 1500 500 1500 N 600 300 120 6000 2500 J Cantilever force 1FT5070 and 1FT5071 Axial force 1FT5070 and 1FT5071 1FT5 AC servomotors 3 2 Can...

Page 295: ...entilated with connector size 2 3 1FT5 4 9 Fig 4 8 1FT507V force ventilated with connector size 2 3 1FT5 4 10 Fig 4 9 1FT510V force ventilated with connector size 2 3 1FT5 4 11 Fig 4 10 1FT513V force ventilated with connector size 2 3 1FT5 4 12 Standard type of construction optional pulse encoder mounting Fig 4 11 1FT503V non ventilated with connector size 1 1FT5 4 13 Fig 4 12 1FT504V non ventilat...

Page 296: ...onnector size 1 1FT5 4 22 Fig 4 21 1FT510V non ventilated with connector size 2 1FT5 4 23 Standard type of construction optional working brake Fig 4 22 1FT507V non ventilated with connector size 2 1FT5 4 24 Fig 4 23 1FT510V non ventilated with connector size 2 3 1FT5 4 25 Fig 4 24 1FT513V non ventilated with connector size 2 3 1FT5 4 26 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 297: ...1FT5 08 95 1FT5 4 3 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 1 1FT503V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 298: ...1FT5 08 95 1FT5 4 4 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 2 1FT504V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 299: ...1FT5 08 95 1FT5 4 5 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 3 1FT506V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 300: ...1FT5 08 95 1FT5 4 6 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 4 1FT507V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 301: ...1FT5 08 95 1FT5 4 7 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 5 1FT507V non ventilated with connector size 2 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 302: ...1FT5 08 95 1FT5 4 8 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 6 1FT510V non ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 303: ...1FT5 08 95 1FT5 4 9 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 7 1FT513V non ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 304: ...1FT5 08 95 1FT5 4 10 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 8 1FT507V force ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 305: ...1FT5 08 95 1FT5 4 11 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 9 1FT510V force ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 306: ...1FT5 08 95 1FT5 4 12 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 10 1FT513V force ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 307: ...1FT5 08 95 1FT5 4 13 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 11 1FT503V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 308: ...1FT5 08 95 1FT5 4 14 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 12 1FT504V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 309: ...1FT5 08 95 1FT5 4 15 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 13 1FT506V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 310: ...1FT5 08 95 1FT5 4 16 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 14 1FT507V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 311: ...1FT5 08 95 1FT5 4 17 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 15 1FT507V non ventilated with connector size 2 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 312: ...1FT5 08 95 1FT5 4 18 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 16 1FT510V non ventilated with connector 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 313: ...1FT5 08 95 1FT5 4 19 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 17 1FT513V non ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 314: ...1FT5 08 95 1FT5 4 20 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 18 1FT507V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 315: ...1FT5 08 95 1FT5 4 21 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 19 1FT510V non ventilated with connector size 2 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 316: ...1FT5 08 95 1FT5 4 22 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 20 1FT507V non ventilated with connector size 1 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 317: ...1FT5 08 95 1FT5 4 23 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 21 1FT510V non ventilated with connector size 2 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 318: ...1FT5 08 95 1FT5 4 24 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 22 1FT507V non ventilated with connector size 2 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 319: ...1FT5 08 95 1FT5 4 25 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 23 1FT510V non ventilated with connector size 2 3 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 320: ...1FT5 08 95 1FT5 4 26 Siemens AG 1997 All Rights reserved 6SN1197 0AA20 SIMODRIVE 611 PJ Fig 4 24 1FT513V non ventilated with connector size 2 3 J 1FT5 AC servomotors 4 Dimension drawings 10 96 ...

Page 321: ...FEEDBACK DEVICES FOR 1FT5 GE ...

Page 322: ......

Page 323: ... converter must be externally evaluated High brief overload conditions require additional protective measures as a re sult of the thermal coupling time of the sensor The cables for the temperature sensor are included in the encoder cable Caution The integrated temperature sensor protects the servomotors from overload conditions up to 4 I0 60 K For servomotors shaft heights 36 and 48 the temperatur...

Page 324: ...ut signals S Trapezoidal voltage signals from the tachometer S Absolute signal for the rotor position 18 pieces of information per motor revolution Table 1 1 Technical data tachometer system 1FU Technical data 1FU1030 Shaft heights 36 and 48 1FU1050 Shaft heights 63 to 132 Hall switch system Magnetic device Speed mech limiting speed 8000 RPM 8000 RPM Peak value phase voltage at rated speed 16 40 V...

Page 325: ... Application Indirect measuring system for digital position control loop Evaluation Incremental Output signals Squarewave RS422 TTL td a A A B B R R Fig 1 2 Signal characteristics for clockwise direction of rotation The servomotors may only be utilized for a temperature rise of T 60 K Fig 1 3 1FT5 servomotor with integrated ROD 320 005 pulse encoder Pulse encoder ROD 320 005 Encoder systems GE 1 1...

Page 326: ...efly all outputs to 0 V 1 output continuously at 25 C Light source LED which is vibration proof Operating temperature 30 C to 100 C Intrinsic moment of inertia 0 035 10 4 kgm2 Ground 0 25 kg Maximum electrical speed nmax fg 103 60 Pulse number RPM fg kHz Limiting frequency 3dB Connection 17 pin flange mounted socket connector pins F G H R S J T K L M N P E D C B A When viewing the connector side p...

Page 327: ...ted on the motor synchronous flange Application Indirect measuring system for the digital closed loop control circuit Evaluation Incremental Output signals Squarewave RS422 TTL 2 channels displaced through 90 electrical 1 zero pulse per revolution A A B B R R Fig 1 4 Signal characteristics for a clockwise direction of rotation Fig 1 5 1FT5 servomotor with mounted rotary encoder Incremental encoder...

Page 328: ... input IP 67 with shaft input IP 64 Operating temperature Storage temperature 30 C to 100 C 30 C to 80 C Vibration stressing acc to DIN IEC 68 2 6 Shock stressing acc to DIN IEC 68 2 29 100 m s2 50 2000 Hz 1000 m s2 11 ms Moment of inertia of the mounted en coder including coupling and motor shaft 0 0175 10 4 kgm2 Moment of inertia of the encoder 1 45 10 6 kgm2 Weight 0 25 kg 12 pin connection con...

Page 329: ...ange S 6FX2001 2VVV with RS 422 TTL S 6FX2001 3VVV with sinusoidal 1Vpp S 6FX2001 4VVV with HTL as well as mounting compatible encoders SIMODRIVE Sensor absolute value encoders with synchronous flange S 6FX2001 5VVV with SSI or Profibus DP as well as mounting compatible encoders 5 9 Typ e B 1 1FT503V 5 9 1FT504V 7 1 1FT506V 6 3 1FT507V 1FT510V 5 9 1FT513V 5 9 B Fig 1 6 Mounting absolute angle enco...

Reviews: