Inter-Integrated Circuit (IIC)
MC1321x Reference Manual, Rev. 1.6
19-12
Freescale Semiconductor
clock, for which the low period is equal to the longest clock low period and the high is equal to the shortest
one among the masters. The relative priority of the contending masters is determined by a data arbitration
procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The
losing masters immediately switch over to Slave Receive Mode and stop driving SDA output. In this case,
the transition from Master to Slave Mode does not generate a STOP condition. Meanwhile, a status bit is
set by hardware to indicate loss of arbitration.
19.5.1.7
Clock Synchronization
Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and after a device’s clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see
). When all
devices concerned have counted off their low period, the synchronized clock SCL line is released and
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.
Figure 19-8. IIC Clock Synchronization
19.5.1.8
Handshaking
The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.
19.5.1.9
Clock Stretching
The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.
SCL1
SCL2
SCL
INTERNAL COUNTER RESET
DELAY
START COUNTING HIGH PERIOD
Summary of Contents for freescale semiconductor MC13211
Page 40: ...MC1321x Pins and Connections MC1321x Reference Manual Rev 1 6 2 6 Freescale Semiconductor...
Page 166: ...Modem Modes of Operation MC1321x Reference Manual Rev 1 6 7 22 Freescale Semiconductor...
Page 172: ...Modem Interrupt Description MC1321x Reference Manual Rev 1 6 8 6 Freescale Semiconductor...
Page 186: ...MCU Modes of Operation MC1321x Reference Manual Rev 1 6 10 8 Freescale Semiconductor...
Page 208: ...MCU Memory MC1321x Reference Manual Rev 1 6 11 22 Freescale Semiconductor...
Page 244: ...MCU Parallel Input Output MC1321x Reference Manual Rev 1 6 13 20 Freescale Semiconductor...
Page 288: ...MCU Central Processor Unit CPU MC1321x Reference Manual Rev 1 6 15 20 Freescale Semiconductor...
Page 308: ...MCU Timer PWM TPM Module MC1321x Reference Manual Rev 1 6 17 16 Freescale Semiconductor...
Page 338: ...Inter Integrated Circuit IIC MC1321x Reference Manual Rev 1 6 19 14 Freescale Semiconductor...
Page 372: ...Development Support MC1321x Reference Manual Rev 1 6 21 20 Freescale Semiconductor...