![DAB PUMPS PWM 201 Instruction For Installation And Maintenance Download Page 165](http://html1.mh-extra.com/html/dab-pumps/pwm-201/pwm-201_instruction-for-installation-and-maintenance_495533165.webp)
FRANÇAIS
163
6.6.8
Configuration du nombre de convertisseurs et des réserves
6.6.8.1
NA : Convertisseurs actifs
Configure le nombre maximum de convertisseurs qui participent au pompage.
Peut prendre des valeurs entre 1 et le nombre de convertisseurs présents (max. 8). La valeur par défaut pour NA est N, c’est-à-dire
le nombre de convertisseurs présents dans la chaîne ; cela signifie que si on insère ou enlève des convertisseurs de la chaîne, NA
prend toujours une valeur égale au nombre de convertisseurs présents détectés automatiquement. En configurant une valeur
différente de N, on fixe sur le nombre configuré, le nombre maximum de convertisseurs qui peuvent participer au pompage.
Ce paramètre sert dans le cas où il y a une limite de pompes que l’on peut ou veut garder allumées ou si l’on veut garder un ou
plusieurs convertisseurs comme réserve (voir IC: Configuration de la réserve par. 6.6.8.3 et les exemples ci-après).
Dans cette même page de menu on peut voir (sans pouvoir les modifier) aussi les deux autres paramètres du système liés à celui-ci,
à savoir N, nombre de convertisseurs présents lu en automatique par le système, et NC, nombre maximum de convertisseurs
simultanés.
6.6.8.2
NC : Convertisseurs simultanés
Configure le nombre maximum de convertisseurs qui peuvent travailler simultanément.
Peut prendre des valeurs entre 1 et NA. Par défaut, NC prend la valeur NA, cela signifie que quelle que soit la variation de NA, NC
prend la valeur de NA. En configurant une valeur différente de NA, on s’éloigne de NA et on fixe sur le nombre configuré, le nombre
maximum de convertisseurs simultanés. Ce paramètre sert dans les cas où on a une limite de pompes que l’on veut ou que l’on
peut garder allumées (voir IC: Configuration de la réserve par. 6.6.8.3 et les exemples qui suivent).
Dans cette même page de menu on peut voir (sans pouvoir les modifier) aussi les deux autres paramètres du système liés à celui-ci,
à savoir N, nombre de convertisseurs présents lu en automatique par le système, et NA, nombre de convertisseurs actifs.
6.6.8.3
IC : Configuration de la réserve
Configure le convertisseur comme automatique ou réserve. S’il est configuré sur auto (par défaut) le convertisseur participe au
pompage normal, s’il est configuré comme réserve, on lui associe la priorité minimum de démarrage, c’est-à-dire que le
convertisseur sur lequel est effectué cette configuration partira toujours en dernier. Si on configure un nombre de convertisseurs
actifs inférieur d’une unité par rapport au nombre de convertisseurs présents et qu’on configure un élément comme réserve, l’effet
obtenu est que, en l’absence d’inconvénients, le convertisseur de réserve ne participe pas au pompage régulier ; par contre si l’un
des convertisseurs qui participent au pompage a une panne (coupure d’alimentation, intervention d’une protection etc.), le
convertisseur de réserve se met en marche.
L’état de configuration « réserve » est visible de la façon suivante : dans la page SM, la partie supérieure de l’icône apparaît
colorée ; dans les pages AD et principale, l’icône de la communication représentant l’adresse du convertisseur apparaît avec le
numéro sur fond coloré. Les convertisseurs configurés comme réserve peuvent être aussi plus d’un à l’intérieur d’un système de
pompage.
Les convertisseurs configurés comme réserve même s’ils ne participent pas au pompage normal sont quand même maintenus en
pleine efficacité par l’algorithme d’antistagnation. L’algorithme antistagnation une fois toutes les 23 heures s’occupe d’échanger la
priorité de démarrage et d’accumuler au moins une minute continue de débit à chaque convertisseur. Cet algorithme vise à éviter la
dégradation de l’eau à l’intérieur de la roue et à maintenir les organes mobiles en bon état de marche ; il est utile pour tous les
convertisseurs et en particulier pour les convertisseurs configurés comme réserve qui dans les conditions normales ne travaillent
pas.
6.6.8.3.1
Exemples de confuguration pour les systèmes multi-inverseur
Exemple 1 :
Un groupe de pompage composé de 2 convertisseurs (N=2 détecté automatiquement) dont 1 configuré actif (NA=1), un simultané
(NC=1 ou NC=NA puisque NA=1 ) et un comme réserve (IC=réserve sur un des deux convertisseurs).
L’effet que l’on aura est le suivant : le convertisseur non configuré comme réserve partira et travaillera tout seul (même s’il ne
parvient pas à soutenir la charge hydraulique et que la pression réalisée est trop basse). S’il tombe en panne le convertisseur de
réserve se met en marche.
Exemple 2 :
Un groupe de pompage composé de 2 convertisseurs (N=2 détecté automatiquement) où tous les convertisseurs sont actifs et
simultanés (configurations d’usine NA=N et NC=NA ) et un comme réserve (IC=réserve sur un des deux convertisseurs).
L’effet que l’on aura est le suivant : le convertisseur qui n’est pas configuré comme réserve part toujours en premier, si la pression
réalisée est trop basse le deuxième convertisseur configuré comme réserve part à son tour. De cette manière, on cherche toujours
et dans tous les cas à préserver l’utilisation d’un convertisseur en particulier (celui qui est configuré comme réserve), mais celui-ci
peut servir de secours en cas de besoin en présence d’une charge hydraulique supérieure.
Exemple 3 :
Summary of Contents for PWM 201
Page 13: ...ITALIANO 11 Figura 2 Fissaggio e distanza minima per la circolazione d aria...
Page 73: ...ENGLISH 71 Figure 2 Fixture and minimum clearance for air circulation...
Page 129: ...FRAN AIS 127 Figure 2 Fixation et distance minimum pour la circulation de l air...
Page 185: ...DEUTSCH 183 Abbildung 2 Befestigung und Mindestabstand f r die Luftzirkulation...
Page 244: ...ESPA OL 242 Figura 2 Fijaci n y distancia m nima para la circulaci n del aire...
Page 295: ...293 IEC 60634...
Page 296: ...294 1 6 1 1...
Page 300: ...298 1 2 5 2 1 2 1 2 2...
Page 301: ...299 2...
Page 302: ...300 2 2 3 3 15 2 2 1 4 2 2 1 1 PWM 203 202 201 3 1 LN 4 2 3...
Page 306: ...304 6 2 2 3 3 Press e Flow 7 A B C D...
Page 311: ...309 DC AC 50 60 8 6 2 1 5 36 36 12 3 3 3 3 2 13 7 11 8 11...
Page 313: ...311 9 MODE 1 SET 9 3 EEprom SET 6 SET MODE 3 1 11 3 2 1 2 3 2 1 MODE SET MODE 10...
Page 315: ...313 SO AE MP I1 1 I2 2 I3 3 I4 4 O1 1 O2 2 RF PW 11 3 2 2 13 SET 13 15 14...
Page 316: ...314 14 3 3 12 GO SB BL LP HP EC OC OF SC OT...
Page 318: ...316 4 4 1 Link 8 4 2 4 2 1 Link Link 16...
Page 322: ...320 4 4 2 2 4 2 5 4 5 ET 6 6 9 FL 4 5 1 4 5 1 1 ET ET ET ET 0 ET 6 6 9 4 5 1 2 23 23...
Page 359: ...NEDERLANDS 357 Afbeelding 2 Bevestiging en minimumafstand voor luchtrecirculatie...
Page 418: ...SVENSKA 416 Fig 2 Fasts ttning och min utrymme f r luftcirkulation...
Page 473: ...T RK E 471 ekil 2 Hava sirk lasyonu tesisat ve minimum a kl k...
Page 523: ...520 IEC 364 inverter...
Page 524: ...521 1 Inverter inverter inverter 6 inverter 1 1...
Page 528: ...525 1 2 1 1 inverter inverter 1 1 2 5 inverter 2 1 inverter 2 1 2 2 C...
Page 529: ...526 2...
Page 534: ...531 6 2 2 3 3 Press Flow 7 A B C D...
Page 539: ...536 DC V AC 50 60 Hz Vrms V 8 6 V 2 1 5 V 36 36 12V mA 3 3 3 3 mm 2 13 7 11 8...
Page 545: ...542 14 3 3 go Hz bar psi 12 GO SB BL LP HP EC OC OF SC OT...
Page 588: ...ROM N 585 Figura 2 Fixarea i distan a minim pentru circula ia aerului...
Page 635: ...01 20 cod 60198807...