FRANÇAIS
162
6.6.2
T1: Temps d’extinction après le signal de basse pression
Configure le temps d’extinction du convertisseur à partir de la réception du signal de basse pression (voir Configuration de la
détection de basse pression par. 6.6.13.5). Le signal de basse pression peut être reçu sur chacune des 4 entrées en configurant
l’entrée comme il se doit (voir Configuration des entrées numériques auxiliaires IN1, IN2, IN3, IN4 par. 6.6.13).
T1 peut être réglé entre 0 et 12 s. La valeur d’usine est de 2 s.
6.6.3
T2 : Retard d’extinction
Configure le retard avec lequel le convertisseur doit s’éteindre à partir du moment où les conditions d’extinction sont atteintes :
surpression de l’installation et débit inférieur au débit minimum.
T2 peut être réglé entre 5 et 120 s. La valeur d’usine est de 10 s.
6.6.4
GP : Coefficient de gain proportionnel
Le terme proportionnel en général doit être augmenté pour des systèmes caractérisés par une certaine élasticité (conduites en PVC
et larges) et diminué en cas d’installations rigides (conduites en fer et étroites).
Pour maintenir constante la pression dans l’installation, le convertisseur réalise un contrôle de type PI sur l’erreur de pression
mesurée. En fonction de cette erreur, le convertisseur calcule la puissance à fournir à l’électropompe. Le comportement de ce
contrôle dépend des paramètres GP et GI configurés. Pour répondre aux divers comportements des différents types d’installations
hydrauliques où le système peut travailler, le convertisseur permet de sélectionner des paramètres différents de ceux configurés
d’usine.
Pour la quasi totalité des installations, les paramètres GP et GI d’usine sont ceux optimaux.
Toutefois, si des
problèmes de régulation se présentent, on peut intervenir sur ces configurations.
6.6.5
GI : Coefficient de gain intégral
En présence de grandes chutes de pression avec l’augmentation subite du débit ou d’une réponse lente du système, augmenter la
valeur de GI. Par contre, en cas d’oscillations de pression autour de la valeur de consigne, diminuer la valeur de GI.
Un exemple typique d’installation dans laquelle il est nécessaire de diminuer la valeur de GI est celle où le convertisseur
se trouve loin de l’électropompe. Cela à cause de la présence d’une élasticité hydraulique qui influence le contrôle PI et,
par conséquent, la régulation de la pression
.
IMPORTANT :
Pour obtenir des réglages de pression satisfaisants, en général on doit intervenir à la fois sur GP et sur GI.
6.6.6
FS : Fréquence maximum de rotation
Configuration de la fréquence de rotation de la pompe.
Impose une limite maximum au nombre de tours et peut être configurée entre FN et FN - 20%.
FS permet, dans n’importe quelle condition de régulation, que l’électropompe ne soit jamais pilotée à une fréquence supérieure à
celle configurée.
FS peut être redimensionnée automatiquement après la modification de FN, quand la relation indiquée ci-dessus n’est pas vérifiée
(ex. si la valeur de FS est inférieure à FN – 20 %, FS sera redimensionnée à FN - 20 %).
6.6.7
FL : Fréquence minimum de rotation
Avec FL on définit la fréquence minimum à laquelle faire tourner la pompe. La valeur minimum admissible est 0 [Hz], la valeur
maximum est 80 % de Fn ; par exemple, si Fn = 50 [Hz], FL peut être réglée entre 0 Hz et 40 [Hz].
FL peut être redimensionnée automatiquement après la modification de FN, quand la relation indiquée ci-dessus n’est pas vérifiée
(ex. si la valeur de FL est supérieure de 80 % à la FN configurée, FL sera redimensionnée à 80 % de FN).
Configurer une fréquence minimum conformément à ce qui est requis par le constructeur de la pompe
.
Le convertisseur ne pilotera pas la pompe à une fréquence inférieure à FL, cela signifie que si la pompe à la fréquence
FL génère une pression supérieure au point de consigne, on aura une surpression dans l’installation.
Summary of Contents for PWM 201
Page 13: ...ITALIANO 11 Figura 2 Fissaggio e distanza minima per la circolazione d aria...
Page 73: ...ENGLISH 71 Figure 2 Fixture and minimum clearance for air circulation...
Page 129: ...FRAN AIS 127 Figure 2 Fixation et distance minimum pour la circulation de l air...
Page 185: ...DEUTSCH 183 Abbildung 2 Befestigung und Mindestabstand f r die Luftzirkulation...
Page 244: ...ESPA OL 242 Figura 2 Fijaci n y distancia m nima para la circulaci n del aire...
Page 295: ...293 IEC 60634...
Page 296: ...294 1 6 1 1...
Page 300: ...298 1 2 5 2 1 2 1 2 2...
Page 301: ...299 2...
Page 302: ...300 2 2 3 3 15 2 2 1 4 2 2 1 1 PWM 203 202 201 3 1 LN 4 2 3...
Page 306: ...304 6 2 2 3 3 Press e Flow 7 A B C D...
Page 311: ...309 DC AC 50 60 8 6 2 1 5 36 36 12 3 3 3 3 2 13 7 11 8 11...
Page 313: ...311 9 MODE 1 SET 9 3 EEprom SET 6 SET MODE 3 1 11 3 2 1 2 3 2 1 MODE SET MODE 10...
Page 315: ...313 SO AE MP I1 1 I2 2 I3 3 I4 4 O1 1 O2 2 RF PW 11 3 2 2 13 SET 13 15 14...
Page 316: ...314 14 3 3 12 GO SB BL LP HP EC OC OF SC OT...
Page 318: ...316 4 4 1 Link 8 4 2 4 2 1 Link Link 16...
Page 322: ...320 4 4 2 2 4 2 5 4 5 ET 6 6 9 FL 4 5 1 4 5 1 1 ET ET ET ET 0 ET 6 6 9 4 5 1 2 23 23...
Page 359: ...NEDERLANDS 357 Afbeelding 2 Bevestiging en minimumafstand voor luchtrecirculatie...
Page 418: ...SVENSKA 416 Fig 2 Fasts ttning och min utrymme f r luftcirkulation...
Page 473: ...T RK E 471 ekil 2 Hava sirk lasyonu tesisat ve minimum a kl k...
Page 523: ...520 IEC 364 inverter...
Page 524: ...521 1 Inverter inverter inverter 6 inverter 1 1...
Page 528: ...525 1 2 1 1 inverter inverter 1 1 2 5 inverter 2 1 inverter 2 1 2 2 C...
Page 529: ...526 2...
Page 534: ...531 6 2 2 3 3 Press Flow 7 A B C D...
Page 539: ...536 DC V AC 50 60 Hz Vrms V 8 6 V 2 1 5 V 36 36 12V mA 3 3 3 3 mm 2 13 7 11 8...
Page 545: ...542 14 3 3 go Hz bar psi 12 GO SB BL LP HP EC OC OF SC OT...
Page 588: ...ROM N 585 Figura 2 Fixarea i distan a minim pentru circula ia aerului...
Page 635: ...01 20 cod 60198807...