Heatsink Clip Load Metrology
Thermal and Mechanical Design Guidelines
69
Appendix B
Heatsink Clip Load
Metrology
B.1
Overview
This section describes a procedure for measuring the load applied by the heatsink
assembly on a processor package.
This procedure is recommended to verify the preload is within the design target range
for a design, and in different situations. For example:
•
Heatsink preload for the LGA775 socket
•
Quantify preload degradation under bake conditions.
Note:
This document reflects the current metrology used by Intel. Intel is continuously
exploring new ways to improve metrology. Updates will be provided later as this
document is revised as appropriate.
B.2
Test Preparation
B.2.1
Heatsink Preparation
Three load cells are assembled into the base of the heatsink under test, in the area
interfacing with the processor Integrated Heat Spreader (IHS), using load cells
equivalent to those listed in Section
B.2.2.
To install the load cells, machine a pocket in the heatsink base, as shown Figure 28
and Figure 29. The load cells should be distributed evenly, as close as possible to the
pocket walls. Apply wax around the circumference of each load cell and the surface of
the pocket around each cell to maintain the load cells in place during the heatsink
installation on the processor and motherboard (Refer to Figure 29).
The depth of the pocket depends on the height of the load cell used for the test. It is
necessary that the load cells protrude out of the heatsink base. However, this
protrusion should be kept minimal, as it will create additional load by artificially
raising the heatsink base. The measurement offset depends on the whole assembly
stiffness (i.e. motherboard, clip, etc.). Figure 30 shows an example using the
Heatsink.
Note:
When optimizing the heatsink pocket depth, the variation of the load cell height
should also be taken into account to make sure that all load cells protrude equally
from the heatsink base. It may be useful to screen the load cells prior to installation to
minimize variation.
Summary of Contents for QX68000 Core 2 Extreme
Page 30: ...LGA775 Socket Heatsink Loading 30 Thermal and Mechanical Design Guidelines...
Page 74: ...Heatsink Clip Load Metrology 74 Thermal and Mechanical Design Guidelines...
Page 76: ...Thermal Interface Management 76 Thermal and Mechanical Design Guidelines...
Page 96: ...Case Temperature Reference Metrology 96 Thermal and Mechanical Design Guidelines...
Page 108: ...Legacy Fan Speed Control 108 Thermal and Mechanical Design Guidelines...
Page 112: ...BTX System Thermal Considerations 112 Thermal and Mechanical Design Guidelines...