Thermal Metrology
Thermal and Mechanical Design Guidelines
23
3
Thermal Metrology
This section discusses guidelines for testing thermal solutions, including measuring
processor temperatures. In all cases, the thermal engineer must measure power
dissipation and temperature to validate a thermal solution. To define the performance
of a thermal solution the “thermal characterization parameter”,
Ψ
(“psi”) will be used.
3.1
Characterizing Cooling Performance
Requirements
The idea of a “thermal characterization parameter”,
Ψ
(“psi”), is a convenient way to
characterize the performance needed for the thermal solution and to compare thermal
solutions in identical situations (same heat source and local ambient conditions). The
thermal characterization parameter is calculated using total package power.
Note:
Heat transfer is a three-dimensional phenomenon that can rarely be accurately and
easily modeled by a single resistance parameter like
Ψ
.
The case-to-local ambient thermal characterization parameter value (
Ψ
CA
) is used as a
measure of the thermal performance of the overall thermal solution that is attached to
the processor package. It is defined by the following equation, and measured in units
of °C/W:
Ψ
CA
= (T
C
– T
A
) / P
D
(Equation 1)
Where:
Ψ
CA
= Case-to-local ambient thermal characterization parameter (°C/W)
T
C
= Processor case temperature (°C)
T
A
= Local ambient temperature in chassis at processor (°C)
P
D
= Processor total power dissipation (W) (assumes all power dissipates
through the IHS)
Summary of Contents for QX68000 Core 2 Extreme
Page 30: ...LGA775 Socket Heatsink Loading 30 Thermal and Mechanical Design Guidelines...
Page 74: ...Heatsink Clip Load Metrology 74 Thermal and Mechanical Design Guidelines...
Page 76: ...Thermal Interface Management 76 Thermal and Mechanical Design Guidelines...
Page 96: ...Case Temperature Reference Metrology 96 Thermal and Mechanical Design Guidelines...
Page 108: ...Legacy Fan Speed Control 108 Thermal and Mechanical Design Guidelines...
Page 112: ...BTX System Thermal Considerations 112 Thermal and Mechanical Design Guidelines...