Page 17-13
The calculator provides for values of the upper-tail (cumulative) distribution
function for the F distribution, function UTPF, given the parameters
ν
N and
ν
D,
and the value of F. The definition of this function is, therefore,
For example, to calculate UTPF(10,5, 2.5) = 0.161834…
Different probability calculations for the F distribution can be defined using the
function UTPF, as follows:
Θ
P(F<a) = 1 - UTPF(
ν
N
, ν
D,a)
Θ
P(a<F<b) = P(F<b) - P(F<a) = 1 -UTPF(
ν
N
, ν
D,b)- (1 - UTPF(
ν
N
, ν
D,a))
= UTPF(
ν
N
, ν
D,a) - UTPF(
ν
N
, ν
D,b)
Θ
P(F>c) = UTPF(
ν
N
, ν
D,a)
Example: Given
ν
N = 10,
ν
D = 5, find:
P(F<2) = 1-UTPF(10,5,2) = 0.7700…
P(5<F<10) = UTPF(10,5,5) – UTPF(10,5,10) = 3.4693..E-2
P(F>5) = UTPF(10,5,5) = 4.4808..E-2
Inverse cumulative distribution functions
For a continuous random variable X with cumulative density function (cdf) F(x) =
P(X<x) = p, to calculate the inverse cumulative distribution function we need to
find the value of x, such that x = F
-1
(p). This value is relatively simple to find for
the cases of the exponential and Weibull distributions since their cdf’s have a
closed form expression:
Θ
Exponential, F(x) = 1 - exp(-x/
β
)
Θ
Weibull, F(x) = 1-exp(-
α
x
β
)
(Before continuing, make sure to purge variables
α
and
β
). To find the inverse
cdf’s for these two distributions we need just solve for x from these expressions,
i.e.,
∫
∫
∞
−
∞
≤
ℑ
−
=
−
=
=
t
t
F
P
dF
F
f
dF
F
f
F
D
N
UTPF
)
(
1
)
(
1
)
(
)
,
,
(
ν
ν
Summary of Contents for 50G
Page 1: ...HP g graphing calculator user s guide H Edition 1 HP part number F2229AA 90006 ...
Page 130: ...Page 2 70 The CMDS CoMmanDS menu activated within the Equation Writer i e O L CMDS ...
Page 206: ...Page 5 29 LIN LNCOLLECT POWEREXPAND SIMPLIFY ...
Page 257: ...Page 7 20 ...
Page 383: ...Page 11 56 Function KER Function MKISOM ...
Page 715: ...Page 21 68 Whereas using RPL there is no problem when loading this program in algebraic mode ...
Page 858: ...Page L 5 ...