![HP 50G User Manual Download Page 469](http://html.mh-extra.com/html/hp/50g/50g_user-manual_156571469.webp)
Page 14-9
Jacobian of coordinate transformation
Consider the coordinate transformation x = x(u,v), y = y(u,v). The Jacobian of
this transformation is defined as
.
When calculating an integral using such transformation, the expression to use
is
, where R’ is the region R
expressed in (u,v) coordinates.
Double integral in polar coordinates
To transform from polar to Cartesian coordinates we use x(r,
θ
) = r cos
θ
, and
y(r,
θ
) = r sin
θ
. Thus, the Jacobian of the transformation is
With this result, integrals in polar coordinates are written as
⎟⎟
⎟
⎟
⎠
⎞
⎜⎜
⎜
⎜
⎝
⎛
∂
∂
∂
∂
∂
∂
∂
∂
=
=
v
y
u
y
v
x
u
x
J
J
det
)
det(
|
|
∫∫
∫∫
=
'
|
|
)]
,
(
),
,
(
[
)
,
(
R
R
dudv
J
v
u
y
v
u
x
dydx
y
x
φ
φ
r
r
r
y
r
y
x
r
x
J
=
⋅
⋅
−
=
∂
∂
∂
∂
∂
∂
∂
∂
=
)
cos(
)
sin(
)
sin(
)
cos(
|
|
θ
θ
θ
θ
θ
θ
Summary of Contents for 50G
Page 1: ...HP g graphing calculator user s guide H Edition 1 HP part number F2229AA 90006 ...
Page 130: ...Page 2 70 The CMDS CoMmanDS menu activated within the Equation Writer i e O L CMDS ...
Page 206: ...Page 5 29 LIN LNCOLLECT POWEREXPAND SIMPLIFY ...
Page 257: ...Page 7 20 ...
Page 383: ...Page 11 56 Function KER Function MKISOM ...
Page 715: ...Page 21 68 Whereas using RPL there is no problem when loading this program in algebraic mode ...
Page 858: ...Page L 5 ...