
12-15
IM CW140-E
Harmonics Measure Mode
12
12.6 Computational Expressions
The table below lists the computational expressions used for Harmonic
Measure mode.
Equations
Vn=
(Vnr)
2
+(Vni)
2
2
An=
(Anr)
2
+(Ani)
2
2
n
th order RMS
fundamental wave RMS
×
100%
×
100%
= tan
–1
(
) - {tan
–1
(
)}
×
n
Vni
Vnr
V1i
V1r
= tan
–1
(
) - {tan
–1
(
)}
×
n
Ani
Anr
V1i
A1r
n=
(
n
th order harmonic voltage phase) - (fundamental wave phase)
×
n
θ
n=
(
n
th order harmonic voltage phase) - (fundamental wave phase)
×
n
θ
THD(IEEE)=
(
n
th order harmonic voltage (current) RMS)
2
(fundamental wave voltage (current) RMS)
2
THD(CSA)=
(
n
th order harmonic voltage (current) RMS)
2
n
th order active power
fundamental wave active power
(
n
th order harmonic voltage (current) RMS)
2
Voltage RMS
Current RMS
RMS nth order
content
RMS phase angle
Total Harmonic
Distortion content
IEEE:
Total harmonic
distortion
content (CSA)
Power
Power nth
order content
Power phase angle
1
φ
2W
Pn=Vnr
×
Anr+Vni
×
Ani
1
φ
3W
Pn=P1n+P2n
3
φ
3W
Pn=P1n+P3n
3
φ
4W
Pn=P1n+P2n+P3n
•
With reactive power meter method
1
φ
2W
Qn=Vnr
×
Ani–Vni
×
Anr
1
φ
3W
Qn=Q1n+Q2n
3
φ
3W
Qn=Q1n+Q3n
3
φ
4W
Qn=Q1n+Q2n+Q3n
Pn
Qn
θ
Pn = tan
–1
(
)
•
Without reactive power meter method
1
φ
2W
VAn=Vn
×
An
1
φ
3W
VAn=V1n
×
A1n+V2n
×
A2n
3
φ
3W
VAn= (V1n
×
A1n+V3n
×
A3n)
3
φ
4W
VAn=V1n
×
A1n+V2n
×
A2n+V3n
×
A3n
VAn
Pn
θ
Pn = cos
-1
(
)
Σ
13
n=1
Σ
13
n=2
Σ
13
n=2
2
Содержание CW140
Страница 1: ...User s Manual CW140 CLAMP ON POWER METER IM CW140 E IM CW140 E 3rd Edition July 2001 YK ...
Страница 2: ......
Страница 14: ......
Страница 72: ......
Страница 102: ......
Страница 138: ......
Страница 152: ......
Страница 160: ......
Страница 200: ......
Страница 256: ......
Страница 274: ......
Страница 276: ......
Страница 286: ......
Страница 289: ......