196
)
0
0000025
.
0
00078019
.
0
10666667
.
0
(
64
6.
777
The example is a symmetrical transitional curve. N1=N2
,
E1=E2
⑷
calculate vector height
R
)
cos
1
(
R
E
R
18
cos
1
(
100
777
.
6
R
°20′06″)
1.700
In the symmetrical transitional curve
R
R
2
1
⑸
calculate transitional point coordinate
sin
R
N
N
m
=63.348-100sin18°20′06″=31.891
In the symmetrical transitional curve
N
N
m
m
2
1
⑹
Calculation of Tangent Distance
N
R
R
D
m
LA
LA
ec
LA
R
1
1
2
1
)
cot(
)
(
cos
)
2
tan(
LA
111°55′47″
,
sin
1
cos
ec
,
tan
1
cot
D
1
100 * tan(111°55′47″/ 2) +1.7(1 / sin111°55′47″)
–1.7(1 / tan 111°55′47″) +31.891
=148.06015 + 1.8326 + 0.6844 +31.891
=182.468
D
D
2
1
⑺
Calculation of coordinate of point KA1
1
1
1
1
cos
D
N
N
IP
KA
1
1
1
1
sin
D
E
E
IP
KA
Bearing from BP to IP1
1
74°03′16.6″
N
KA
1
1300 –182.468 * cos 74°03′16.6″=1249.872 m
E
KA
1
1750 –182.468 * sin 74°03′16.6″=1574.553 m
⑻
Calculation of Arc Length
)
(
2
1
LA
R
L
=R(111°55′47″-2 * 18°20′06″)
=100( 75°15′35″
180
)