Introduction
1-4
1
IEEE 802.1D Bridge
– The switch supports IEEE 802.1D transparent bridging. The
address table facilitates data switching by learning addresses, and then filtering or
forwarding traffic based on this information. The address table supports up to 16K
addresses.
Store-and-Forward Switching
– The switch copies each frame into its memory
before forwarding them to another port. This ensures that all frames are a standard
Ethernet size and have been verified for accuracy with the cyclic redundancy check
(CRC). This prevents bad frames from entering the network and wasting bandwidth.
To avoid dropping frames on congested ports, the switch provides 2 MB for frame
buffering. This buffer can queue packets awaiting transmission on congested
networks.
Spanning Tree Algorithm
– The switch supports these spanning tree protocols:
Spanning Tree Protocol (STP, IEEE 802.1D) – This protocol provides loop detection.
When there are multiple physical paths between segments, this protocol will choose
a single path and disable all others to ensure that only one route exists between any
two stations on the network. This prevents the creation of network loops. However, if
the chosen path should fail for any reason, an alternate path will be activated to
maintain the connection.
Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w) – This protocol reduces the
convergence time for network topology changes to about 3 to 5 seconds, compared
to 30 seconds or more for the older IEEE 802.1D STP standard. It is intended as a
complete replacement for STP, but can still interoperate with switches running the
older standard by automatically reconfiguring ports to STP-compliant mode if they
detect STP protocol messages from attached devices.
Multiple Spanning Tree Protocol (MSTP, IEEE 802.1s) – This protocol is a direct
extension of RSTP. It can provide an independent spanning tree for different VLANs.
It simplifies network management, provides for even faster convergence than RSTP
by limiting the size of each region, and prevents VLAN members from being
segmented from the rest of the group (as sometimes occurs with IEEE 802.1D STP).
Virtual LANs
– The switch supports up to 255 VLANs. A Virtual LAN is a collection
of network nodes that share the same collision domain regardless of their physical
location or connection point in the network. The switch supports tagged VLANs
based on the IEEE 802.1Q standard. Members of VLAN groups can be dynamically
learned via GVRP, or ports can be manually assigned to a specific set of VLANs.
This allows the switch to restrict traffic to the VLAN groups to which a user has been
assigned. By segmenting your network into VLANs, you can:
• Eliminate broadcast storms which severely degrade performance in a flat network.
• Simplify network management for node changes/moves by remotely configuring
VLAN membership for any port, rather than having to manually change the network
connection.
• Provide data security by restricting all traffic to the originating VLAN, except where
a connection is explicitly defined via the switch’s routing service.
Summary of Contents for 8926EM
Page 6: ...ii ...
Page 34: ...Getting Started ...
Page 44: ...Introduction 1 10 1 ...
Page 62: ...Initial Configuration 2 18 2 ...
Page 64: ...Switch Management ...
Page 76: ...Configuring the Switch 3 12 3 ...
Page 118: ...Basic Management Tasks 4 42 4 ...
Page 164: ...User Authentication 6 28 6 ...
Page 176: ...Access Control Lists 7 12 7 ...
Page 284: ...Quality of Service 14 8 14 ...
Page 294: ...Multicast Filtering 15 10 15 ...
Page 300: ...Domain Name Service 16 6 16 ...
Page 310: ...Dynamic Host Configuration Protocol 17 10 17 ...
Page 320: ...Configuring Router Redundancy 18 10 18 ...
Page 344: ...IP Routing 19 24 19 ...
Page 356: ...Unicast Routing 20 12 20 Web Click Routing Protocol RIP Statistics Figure 20 5 RIP Statistics ...
Page 386: ...Unicast Routing 20 42 20 ...
Page 388: ...Command Line Interface ...
Page 400: ...Overview of the Command Line Interface 21 12 21 ...
Page 466: ...SNMP Commands 24 16 24 ...
Page 520: ...Access Control List Commands 26 18 26 ...
Page 546: ...Rate Limit Commands 30 2 30 ...
Page 612: ...VLAN Commands 34 24 34 ...
Page 626: ...Class of Service Commands 35 14 35 ...
Page 670: ...DHCP Commands 39 16 39 ...
Page 716: ...IP Interface Commands 41 36 41 ...
Page 768: ...IP Routing Commands 42 52 42 ...
Page 770: ...Appendices ...
Page 791: ......