![Freescale Semiconductor MCF52230 ColdFire Reference Manual Download Page 18](http://html1.mh-extra.com/html/freescale-semiconductor/mcf52230-coldfire/mcf52230-coldfire_reference-manual_2330648018.webp)
Overview
MCF52235 ColdFire® Integrated Microcontroller Reference Manual, Rev. 6
Freescale Semiconductor
1-9
•
General purpose I/O interface
— Up to 56 bits of general purpose I/O
— Bit manipulation supported via set/clear functions
— Programmable drive strengths
— Unused peripheral pins may be used as extra GPIO
•
JTAG support for system level board testing
1.4.1
V2 Core Overview
The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction
buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and
instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched
instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline
stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX)
performs instruction execution and calculates operand effective addresses, if needed.
The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a
separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the
MCF52235 core includes the enhanced multiply-accumulate (EMAC) unit for improved signal processing
capabilities. The EMAC implements a three-stage arithmetic pipeline, optimized for 16
×
16 bit operations,
with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned
integers, signed fractional operands, and a complete set of instructions to process these data types. The
EMAC provides support for execution of DSP operations within the context of a single processor at a
minimal hardware cost.
1.4.2
Integrated Debug Module
The ColdFire processor core debug interface is provided to support system debugging in conjunction with
low-cost debug and emulator development tools. Through a standard debug interface, access debug
information and real-time tracing capability is provided on 112-and 121-lead packages. This allows the
processor and system to be debugged at full speed without the need for costly in-circuit emulators.
The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an
address mask register, a data and a data mask register, four PC registers, and one PC mask register. These
registers can be accessed through the dedicated debug serial communication channel or from the
processor’s supervisor mode programming model. The breakpoint registers can be configured to generate
triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions.
The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception.
The MCF52235 implements revision B+ of the ColdFire Debug Architecture.
The MCF52235’s interrupt servicing options during emulator mode allow real-time critical interrupt
service routines to be serviced while processing a debug interrupt event, thereby ensuring that the system
continues to operate even during debugging.
To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data
(DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand
Because
of
an
order
from
the
United
States
International
Trade
Commission,
BGA-packaged
product
lines
and
part
numbers
indicated
here
currently
are
not
available
from
Freescale
for
import
or
sale
in
the
United
States
prior
to
September
2010:MCF52234CVM60,
MCF52235CVM60