150
TABLA GUÍA APROXIMADA PARA LA ELECCIÓN DE LOS PARÁMETROS DE SOLDADURA REFERIDA A LAS APLICACIONES
MÁS TÍPICAS Y A LOS ALAMBRE MÁS UTILIZADOS
Diámetro del alambre - peso por cada metro
Tensión
de arco (v)
0,8 mm
1,0-1,2 mm
1,6 mm 2,4 mm
Baja penetración para
pequeños espesores
60 - 160 A
100 - 175 A
Buen control de la
penetración y la fusión
Buena fusión en plano
y en vertical
No empleado
16 - 22
SHORT - ARC
24 - 28
SEMI SHORT-ARC
(Zona de transición)
30 - 45
SPRAY - ARC
120 - 180 A
Soldadura automática
descendiente
250 - 350 A
Soldadura automática
a tensión alta
200 - 300 A
Soldadura automática
de ángulo
150 - 250 A
Baja penetración con
ajuste a 200 A
150 - 250 A
Soldadura automática
con pasadas múltiples
200 - 350 A
Buena penetración
descendiente
300 - 500 A
Buena penetración, alto
depósito en grandes espesores
500 - 750 A
150 - 200 A
No empleado
300 - 400 A
Gases utilizables
La soldadura MIG-MAG se caracteriza principalmente por el tipo de gas utilizado, inerte para la soldadura MIG (Metal Inert Gas),
activo para la soldadura MAG (Metal Active Gas).
- Anhídrido carbónico (CO2)
Si utiliza CO2 como gas de protección se conseguirá elevadas penetraciones con elevada velocidad de avance y buenas propie-
dades mecánicas con un bajo coste de ejercicio. A pesar de esto, el empleo de este gas crea notables problemas sobre la com-
posición química final de las uniones, se produce una pérdida de elementos fácilmente oxidables y se obtiene al mismo tiempo
un enriquecimiento de carbono en el baño.
La soldadura con CO2 puro también da otros tipos de problemas como la excesiva presencia de salpicaduras y la formación de
porosidades de monóxido de carbono.
- Argón
Este gas inerte se utiliza puro en la soldadura de las aleaciones ligeras, mientras para la soldadura de aceros inoxidables al cromo-
níquel es preferible trabajar añadiendo oxígeno y CO2 en un porcentaje del 2%, ya que esto contribuye a la estabilidad del arco
y a la mejor forma del cordón.
- Helio
Este gas se utiliza como alternativa al argón y permite mayores penetraciones (en grandes espesores) y mayores velocidades de
avance.
- Mezcla Argón-Helio
Se consigue un arco más estable respecto al helio puro, además de una mayor penetración y velocidad respecto al argón.
- Mezcla Argón- CO2 y Argón-CO2-oxígeno
Estas mezclas se utilizan sobre todo en la soldadura de los materiales ferrosos en condiciones de el modo de funcionamiento
SHORT-ARC ya que mejora el aporto térmico específico. También pueden utilizarse en SPRAY-ARC. Normalmente la mezcla
contiene un porcentaje de CO2 que va de las del 8 al 20% y de O2 alrededor del 5%.
Summary of Contents for Genesis 4000 MSE
Page 32: ...32...
Page 62: ...62...
Page 212: ...212...
Page 242: ...242...
Page 272: ...272...
Page 302: ...302...
Page 332: ...332...
Page 336: ...336 1 3 1 4 11 35 1 5...
Page 338: ...1 8 IP S IP23S 12 5 mm 60 2 2 1 2 2 10 2 3 400V 230V V 230 400V 338...
Page 339: ...339 15 15 2 1 5 2 4 MMA 3 4 1 2 WF ARC AIR 5 6 7 ARC AIR 8 9 TIG 10 11 TIG 12 13 14 15...
Page 341: ...341 8 9 64 3 3 3 4 LCD 1 2 3 1 m min 22 m min Default 1 0 m min 4 5 3 5 MMA TIG DC MIG MAG...
Page 354: ...5 6 Reset 354...
Page 355: ...355 encoder...
Page 356: ...356...
Page 357: ...357 7 7 1 MMA Hot Start Arc Force antisticking 7 2 TIG TIG Tungsten lnert Gas 3370 C H F lift...
Page 359: ...359 7 3 MIG MAG MIG SHORT ARC 1a SHORT a SPRAY ARC b SPRAY ARC 1b 2 3 2 3 1a 1b...
Page 366: ...366 GENESIS 4000 MSE 3x230 400V...
Page 367: ...367 GENESIS 4000 MSE LCD 3 5 LCD 4 7 3x400V...
Page 368: ...368 GENESIS 4000 MSE LCD 3 5 LCD 4 7 3x230 400V...
Page 369: ...369 GENESIS 5000 MSE 3x400V...
Page 370: ...370 GENESIS 5000 MSE LCD 3 5 LCD 4 7 3x400V...
Page 372: ...372 GENESIS 4000 MSE LCD 3 5 LCD 4 7 3x400V GENESIS 4000 MSE LCD 3 5 LCD 4 7 3x230 400V...
Page 373: ...373 GENESIS 5000 MSE 3x400V GENESIS 5000 MSE LCD 3 5 LCD 4 7 3x400V...