
The receiver then samples each bit time, including the start and stop bits, at (OSR/2),
(OSR/2)+1, and (OSR/2)+2 to determine the logic level for that bit. The logic level is
interpreted to be that of the majority of the samples taken during the bit time. If any
sample in any bit time, including the start and stop bits, in a character frame fails to agree
with the logic level for that bit, the noise flag (LPUART_STAT[NF]) is set when the
received character is transferred to the receive data buffer.
When the LPUART receiver is configured to sample on both edges of the baud rate
clock, the number of segments in each received bit is effectively doubled (from 1 to
OSR×2). The start and data bits are then sampled at OSR, OSR+1 and OSR+2. Sampling
on both edges of the clock must be enabled for oversampling rates of 4× to 7× and is
optional for higher oversampling rates.
The falling edge detection logic continuously looks for falling edges. If an edge is
detected, the sample clock is resynchronized to bit times (unless resynchronization has
been disabled). This improves the reliability of the receiver in the presence of noise or
mismatched baud rates. It does not improve worst case analysis because some characters
do not have any extra falling edges anywhere in the character frame.
In the case of a framing error, provided the received character was not a break character,
the sampling logic that searches for a falling edge is filled with three logic 1 samples so
that a new start bit can be detected almost immediately.
31.3.3.2 Receiver wakeup operation
Receiver wakeup and receiver address matching is a hardware mechanism that allows an
LPUART receiver to ignore the characters in a message intended for a different receiver.
During receiver wakeup, all receivers evaluate the first character(s) of each message, and
as soon as they determine the message is intended for a different receiver, they write
logic 1 to the receiver wake up control bit (LPUART_CTRL[RWU]). When RWU bit
and LPUART_S2[RWUID] bit are set, the status flags associated with the receiver, with
the exception of the idle bit, IDLE, are inhibited from setting, thus eliminating the
software overhead for handling the unimportant message characters. At the end of a
message, or at the beginning of the next message, all receivers automatically force
LPUART_CTRL[RWU] to 0 so all receivers wake up in time to look at the first
character(s) of the next message.
During receiver address matching, the address matching is performed in hardware and the
LPUART receiver will ignore all characters that do not meet the address match
requirements.
Chapter 31 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
K32 L2A Reference Manual, Rev. 2, 01/2020
NXP Semiconductors
841
Содержание K32 L2A Series
Страница 2: ...K32 L2A Reference Manual Rev 2 01 2020 2 NXP Semiconductors...
Страница 42: ...K32 L2A Reference Manual Rev 2 01 2020 42 NXP Semiconductors...
Страница 122: ...Flash Memory Clock K32 L2A Reference Manual Rev 2 01 2020 122 NXP Semiconductors...
Страница 146: ...Module operation in low power modes K32 L2A Reference Manual Rev 2 01 2020 146 NXP Semiconductors...
Страница 158: ...Debug and security K32 L2A Reference Manual Rev 2 01 2020 158 NXP Semiconductors...
Страница 174: ...Module Signal Description Tables K32 L2A Reference Manual Rev 2 01 2020 174 NXP Semiconductors...
Страница 246: ...Application information K32 L2A Reference Manual Rev 2 01 2020 246 NXP Semiconductors...
Страница 322: ...Kinetis Bootloader Status Error Codes K32 L2A Reference Manual Rev 2 01 2020 322 NXP Semiconductors...
Страница 344: ...Application initialization information K32 L2A Reference Manual Rev 2 01 2020 344 NXP Semiconductors...
Страница 374: ...CMP Trigger Mode K32 L2A Reference Manual Rev 2 01 2020 374 NXP Semiconductors...
Страница 384: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 384 NXP Semiconductors...
Страница 592: ...Application Information K32 L2A Reference Manual Rev 2 01 2020 592 NXP Semiconductors...
Страница 602: ...Initialization and application information K32 L2A Reference Manual Rev 2 01 2020 602 NXP Semiconductors...
Страница 656: ...Functional Description K32 L2A Reference Manual Rev 2 01 2020 656 NXP Semiconductors...
Страница 664: ...Functional Description K32 L2A Reference Manual Rev 2 01 2020 664 NXP Semiconductors...
Страница 744: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 744 NXP Semiconductors...
Страница 762: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 762 NXP Semiconductors...
Страница 806: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 806 NXP Semiconductors...
Страница 868: ...Integer square root K32 L2A Reference Manual Rev 2 01 2020 868 NXP Semiconductors...
Страница 976: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 976 NXP Semiconductors...
Страница 1012: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 1012 NXP Semiconductors...
Страница 1094: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 1094 NXP Semiconductors...
Страница 1132: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 1132 NXP Semiconductors...
Страница 1182: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 1182 NXP Semiconductors...
Страница 1290: ...Functional description K32 L2A Reference Manual Rev 2 01 2020 1290 NXP Semiconductors...
Страница 1344: ...USB Voltage Regulator Module Signal Descriptions K32 L2A Reference Manual Rev 2 01 2020 1344 NXP Semiconductors...
Страница 1356: ...Initialization Application Information K32 L2A Reference Manual Rev 2 01 2020 1356 NXP Semiconductors...