5-4
Packet Reference Manual
Classification: Avery Dennison – Public
Using the Run Length Encoding Method
The following s teps explain how to derive a run length c harac ter s tring from a bitm apped graphic .
Eac h s quare on the grid repres ents a dot. A blac k s quare indic ates the dot is ON, and a white
s quare indic ates the dot is OFF.
The following exam ple s hows “1" to indic ate when a s quare is ON, and ”0" to indic ate when a
s quare is OFF. Dots do not have to be c onverted when us ing the run length m ethod.
00000000 00000000 00000000 00000000 00000000 00000000 00111111 11111111 11111111 11110000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000001 11111111 11000000 00000000 00000000 00001111 11111000 00000000 00000000
00000000 00000000 00000000 00000000 00111110 00000000 00000000 00000000 00000000 00000000 00001111 11000000 00000000
00000000 00000000 00000000 00000011 11000000 00000000 00111111 11111111 11111111 11110000 00000000 00011110 00000000
00000000 00000000 00000000 01111100 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11110000
00000000 00000000 00000001 10000011 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110 00001100
00000000 00000000 00000001 10001111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110
00000000 00000000 00000001 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111110
00000000 00000000 00000001 11111111 11111111 11111111 11111000 00000000 00000000 11111111 11111111 11111111 11111110
00000000 00000000 00000001 11111111 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111111 11111100
00000000 00000000 00000000 01111111 10000000 00000000 00000111 11111111 11111111 00000000 00000000 00111111 11110000
00000000 00000000 00000000 00011111 11000000 00000000 00000111 11111111 11111111 00000000 00000000 00011111 11000000
00000000 00000000 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000001 11000000
00000000 00000000 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11000000
00000000 00000000 00000000 00000011 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111110 00000000
00000000 00000000 00000000 00011111 11000000 00000000 00000111 11111111 11111111 00000000 00000000 00011111 11000000
00000000 00000000 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000001 11000000
00000000 00000000 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11000000
00000000 00000000 00000000 00000011 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111110 00000000
00000000 00000000 00000000 00011111 11000000 00000000 00000111 11111111 11111111 00000000 00000000 00011111 11000000
00000000 00000000 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000001 11000000
00000000 00000000 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11000000
00000000 00000000 00000000 00000011 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111110 00000000
00000000 00000000 00000000 00011111 11000000 00000000 00000111 11111111 11111111 00000000 00000000 00011111 11000000
00000000 00000000 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000001 11000000
00000000 00000000 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11000000
00000000 00000000 00000000 00000011 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111110 00000000
00000000 00000000 00000000 00011111 11000000 00000000 00000111 11111111 11111111 00000000 00000000 00011111 11000000
00000000 00000000 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000001 11000000
00000000 00000000 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11000000
00000000 00000000 00000000 00000011 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111110 00000000
00000010 00000000 00000000 00011111 11000000 00000000 00000111 11111111 11111111 00000000 00000000 00011111 11000000
00000011 00000000 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000001 11000000
00000001 11100000 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100001 11000000
00000000 11100000 00000000 00000011 11111111 11110000 00000000 00000000 00000000 00000000 01111111 11111110 00000000
00000000 11111100 00000000 00011100 00000011 11111111 11111111 11111111 11111111 11111111 11111110 00000011 11000000
00000000 11111110 00000000 00000000 00111111 11111111 11111111 11111111 11111111 11111111 11111111 11100011 11000000
1 .
Count the num ber of c ons ec utive OFF or ON dots in a row. W rite the num ber of c ons ec utive
dots in s equenc e for the firs t row on the grid. W rite “ON” or “OFF” after eac h num ber to
indic ate ON or OFF dots .
(ro w 1 , po s itio n 5 0 ) 2 6 o n
(ro w 2 , po s itio n 3 9 ) 1 1 o n, 2 6 o ff, 9 o n
(ro w 3 , po s itio n 3 4 ) 5 o n, 4 5 o ff, 6 o n
2 .
Replac e eac h num ber with its c orres ponding c ode from the Dot to Run Length Enc oding Chart
provided at the end of this c hapter. Us e CAPITAL letters for blac k dots and lower-c as e letters
for white dots .
2 6 o n (Z)1 1 o n (K), 2 6 o ff (z), 9 o n (I)..
If the num ber is greater than 26, write z , followed by the letter c orres ponding to the
am ount over 26. For exam ple, to repres ent 45 off dots , write z s .
5 o n (E), 4 5 o ff (zs ), 6 o n (F)..
3 .
W rite the letter c odes in s equenc e, uninterrupted, for eac h row.
(ro w 1 ,po s itio n 5 0 ) Z
(ro w 2 ,po s itio n 3 9 ) KzI
(ro w 3 ,po s itio n 3 4 ) Ezs F
(ro w 4 ,po s itio n 3 0 ) DpZo D..
If the end of the line s pec ifies OFF dots (lower-c as e letters ), the ending lower-c as e letters
c an be om itted. For exam ple, uZFu c an be written as uZF.
4 .
Repeat s teps
1
through
5
for eac h row on the grid.
5 .
Ins ert the c ode values in s yntax form at.
Содержание Monarch Tabletop Printer 2
Страница 10: ...viii Packet Reference Manual Classification Avery Dennison Public...
Страница 16: ...1 6 Packet Reference Manual Classification Avery Dennison Public...
Страница 48: ...2 32 Packet Reference Manual Classification Avery Dennison Public...
Страница 80: ...3 32 Packet Reference Manual Classification Avery Dennison Public...
Страница 102: ...4 22 Packet Reference Manual Classification Avery Dennison Public...
Страница 138: ...7 10 Packet Reference Manual Classification Avery Dennison Public...
Страница 156: ...8 18 Packet Reference Manual Classification Avery Dennison Public...
Страница 160: ...9 4 Packet Reference Manual Classification Avery Dennison Public...
Страница 196: ...C 8 Packet Reference Manual Classification Avery Dennison Public...
Страница 198: ...D 2 Packet Reference Manual Classification Avery Dennison Public O n lin e Co n figur ation W o r k sheet...
Страница 199: ...Classification Avery Dennison Public Format Design Tools D 3 Su p p ly L a y out G r id s En g lis h...
Страница 200: ...D 4 Packet Reference Manual Classification Avery Dennison Public Su p p ly L a y out G r id s M e tr ic...
Страница 201: ...Classification Avery Dennison Public Format Design Tools D 5 Su p p ly L a y out G r id s Do ts...
Страница 202: ...D 6 Packet Reference Manual Classification Avery Dennison Public...
Страница 205: ......