Processor Thermal/Mechanical Information
24
Thermal and Mechanical Design Guidelines
2.4
System Thermal Solution Considerations
2.4.1
Chassis Thermal Design Capabilities
The Intel reference thermal solutions and Intel Boxed Processor thermal solutions
assume that the chassis delivers a maximum T
A
at the inlet of the processor fan
heatsink. The tables below show the T
A
requirements for the reference solutions and
Intel Boxed Processor thermal solutions.
Table
2–1. Heatsink Inlet Temperature of Intel Reference Thermal Solutions
Topic ATX
E18764-001
1
BTX
Type
II
Heatsink Inlet Temperature
40° C
35.5° C
NOTE:
1.
Intel reference designs (E18764-001) for ATX assume the use of the thermally
advantaged chassis (refer to
Thermally Advantaged Chassis (TAC) Design Guide
for TAC
thermal and mechanical requirements). The TAC 2.0 Design Guide defines a new
processor cooling solution inlet temperature target of 40° C. The existing TAC 1.1
chassis can be compatible with TAC 2.0 guidelines.
Table
2–2. Heatsink Inlet Temperature of Intel Boxed Processor Thermal Solutions
Topic
Boxed Processor for Intel
®
Core™2 Duo Processor
E8000, E7000 Series, Intel
®
Pentium
®
Dual-Core
Processor E6000, E5000 Series, and Intel
®
Celeron
®
Processor E3x00 Series
Heatsink Inlet Temperature
40° C
NOTE:
1.
Boxed Processor thermal solutions for ATX assume the use of the thermally advantaged
chassis (refer to
Thermally Advantaged Chassis (TAC) Design Guide
for TAC thermal
and mechanical requirements). The TAC 2.0 Design Guide defines a new processor
cooling solution inlet temperature target of 40° C. The existing TAC 1.1 chassis can be
compatible with TAC 2.0 guidelines.
2.4.2
Improving Chassis Thermal Performance
The heat generated by components within the chassis must be removed to provide an
adequate operating environment for both the processor and other system
components. Moving air through the chassis brings in air from the external ambient
environment and transports the heat generated by the processor and other system
components out of the system. The number, size and relative position of fans and
vents determine the chassis thermal performance, and the resulting ambient
temperature around the processor. The size and type (passive or active) of the
thermal solution and the amount of system airflow can be traded off against each
other to meet specific system design constraints. Additional constraints are board
layout, spacing, component placement, acoustic requirements and structural
considerations that limit the thermal solution size. For more information, refer to the
Performance ATX Desktop System Thermal Design Suggestions
or
Performance
microATX Desktop System Thermal Design Suggestions
or
Balanced Technology
Extended (BTX) System Design Guide
documents available on the
http://www.formfactors.org/
web site.
Summary of Contents for BX80570E8200 - Core 2 Duo 2.66 GHz Processor
Page 10: ...10 Thermal and Mechanical Design Guidelines...
Page 26: ...Processor Thermal Mechanical Information 26 Thermal and Mechanical Design Guidelines...
Page 82: ...Heatsink Clip Load Metrology 82 Thermal and Mechanical Design Guidelines...
Page 84: ...Thermal Interface Management 84 Thermal and Mechanical Design Guidelines...
Page 110: ...Fan Performance for Reference Design 110 Thermal and Mechanical Design Guidelines...